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A semi-orthoposet (SOP) is a bounded poset P together with a unary operation
' P = Psuchthata =< bimplies b’ = a' and a < a" for all a € P. This structure
generalizes all previously studied quantum logic frameworks and yet is rich
enough so that nontrivial results can be proved. For various types of SOPs it is
shown that a partially defined morphism has an extension to the full SOP and
that there exists an order-determining set of morphisms with a specified range.
These results are applied to obtain representations of SOPs in terms of SOPs of
sets and SOPs of functions. Connections between SOPs and effect algebras as
well as tensor products of SOPs are obtained.

1. INTRODUCTION

Various ordered structures have been considered in the quantum logic
approach to the foundations of quantum physics. Sixty years ago, Birkhoff
and von Neumann (1936) originated the quantum logic approach by proposing
the framework of a modular, complemented lattice. This framework was later
generalized to orthomodular lattices and posets (Beltrametti and Cassinelli,
1981; Gudder, 1979, 1988; Jauch, 1968; Mackey, 1963; Piron, 1976; Ptak and
Pulmannov4, 1991; Varadarajan, 1968/1970). Unfortunately, the categories of
orthomodular lattices and posets do not admit tensor products, which are
important for the study of composite physical systems (Foulis and Randall,
1981; Kldy er al., 1987; Randall and Foulis, 1981). For this and other reasons,
a more general category has been recently introduced, that of orthoalgebras
(Foulis and Bennett, 1993; Foulis et al., 1992; Gudder, 1988). But orthoalge-
bras were still not general enough to include the study of unsharp measure-
ments and propositions. This latter study is usually called the operational or
convexity approach (Ludwig, 1986; Prugovecki, 1986; Schroeck and Foulis,
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1990). The latest framework that has been proposed is the category of effect
algebras or difference posets (Dvurecenskij, 1995, n.d.; Dvurecenskij and
Riecan, 1994; Foulis and Bennett, 1994, n.d.; Giuntini and Greuling, 1989;
Koépka and Chovanec, 1994). This framework includes all the previous ones
and still admits tensor products. Other frameworks have been developed to
study unsharp measurements. These include paraconsistent quantum logic,
Brouwer—Zadeh posets, and three-valued Lukasiewicz posets (Cattaneo and
Nistico, 1989; Dalla Chiara and Giuntini, 1989; Giuntini, 1990; Giuntini and
Greuling, 1989).

In this article, we attempt to set an upper bound for this proliferating
sequence of generalizing frameworks. The structure that we shall study is
called a semi-orthoposet (SOP). This structure generalizes all the previously
mentioned ones, and yet is rich enough so that nontrivial results can be
proved. Besides this, it can be employed to generate orthoalgebras and etfect
algebras in a canonical fashion,

The article begins with basic definitions and results. It then illustrates
various types of SOPs with examples. Our main concern is that of SOP
morphisms, and these are studied next. The two main problems investigated
are whether a partially defined morphism has an extension to the full SOP
and whether there exists an order-determining set of morphisms with a speci-
fied range. We are able to solve both of these problems for various types of
SOPs, but slightly different proofs must be used for each type. We then apply
these results to obtain representation theorems for certain types of SOPs in
terms of SOPs of sets and SOPs of functions. Furthermore, these results are
employed to obtain tensor products for various types of SOPs. Finally, we
give connections between SOPs and effect algebras.

One of the advantages of studying SOPs is that they unify the various
stronger structures and give a deeper understanding of their properties. This
is because we can define certain local properties that hold globally in the
stronger structures.

2. BASIC DEFINITIONS AND RESULTS

A semi-orthoposet (SOP) is a bounded poset (P, 0, 1, =) with a map ":
P — P such that (1) @ = b implies b’ =< a' and (2) a < d¢" forall a € P.
A unit SOP is a SOP in which 1" = 0. An element a € P is complementing
ifana =0,sharpifav a =1, and closed if a = a". If a < b’, we write
a L b. Notice thatif a < b', then b < b" = a’, so 1 is a symmetric relation.
An element a € P is isotropic if a 1 a, strongly isotropic if a = a’, and
orthoisotropic ifa 1 a and whenever b L b, thena L b. Also, a is nonisotropic
ifa t a.
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The following lemmas contain useful basic results. The proof of each
result is elementary but is included for completeness.

Lemma 2.1. A SOP P has the following properties. (i) a” = a’ for all
a e P.(ii) 0’ = 1. (iii) If va, exists, then Aa, exists and (va,)’ = Aaj. (iv)
If Aa, and va, exist, then va, = (aa,)’. (v) If P is a unit SOP and if a is
sharp, then a is complementing. (vi) 1 is sharp and closed and O is sharp
and complementing. (vii) The following are equivalent: P is a unit SOP, 0
is closed, 1 is complementing. (viii) If a is sharp, then a’ is sharp. If a’ is
complementing, then a is complementing. (ix) An element a is closed if and
only if a = b’ for some b € P. (x) Fora € P, a" is the smallest closed upper
bound of a. (xi) If a is closed, then a is strongly isotropic if and only if a
and a’ are isotropic. (xii) If a is isotropic and b = a, then b is isotropic.
(xiii) If @ # 0 is complementing, then a is nonisotropic. (xiv) If a, are closed
and aa, exists, then aa, is closed.

Proof. (i) Since a =< a", a" = a'. Also, a’ = (a’)" = a"”. (ii) Since 0
= 1,1 =1"=0" Hence, | = 1" = 0'. (iii) Suppose va, exists. Then a,
=< va, for all a, so (va,)’ = a, for all a. Suppose b = a, for all a, Then
a, = dai =< b’ for all a, so va, = b'. Hence, b = b" = (va,)’, 5o (va,)' =
Aal. (iv) Since Aa, = a, for all a, a, = (na,)’ for all a. Hence, va, =
(nay)'. (v) Suppose P is a unit SOP and a is sharp. Then a v a’ = | and
by (iii), a’ Aa"=1'"=0.Ifb=<aqa,a’,thenb=ad",a',sob=d"ra =
0. Hence, b = 0,s0a A~ a’ = 0 and a is complementing. (vi) We have shown
in (ii) that 1 is closed. Since 1’ = 1, 1 v 1’ = 1, so 1 is sharp. Since 0 =
0,0 A0" = 0, so 0 is complementing. Since 0 v 0" =0 A 1 = 1, 0 is sharp.
(vii) If Pis a unit SOP, then 0 = 1" = | = 0", s0 0 is closed. If 0 is closed,
thenl’ =0"=0,501 A1’ =1A0=0and | is complementing. If 1 is
complementing, then 1’ = 1 A 1’ = 0, so P is a unit SOP. (viii) If a is sharp,
thenava =1.Ifb=a,a",thenb=a’,a,s0b=ava =1,s0b=
1. Hence, a’ v a” = 1 and a’ is sharp. If a’ is complementing, then a’ A a”
=0.Ifb=gq,a’,thenb=a"a,sob=a Aa" =0.Hence,ana =0
and a is complementing. (ix) If a is closed, then a = (a')". If a = b’ for
some b € P, then a” = b” = b' = a, so a is closed. (x) Clearly, a" is a
closed upper bound for a. If a < b where b is closed, then a” = b" = b. (xi)
Notice that a is strongly isotropic if and only if a = a’ andad’ = a = a".
But this is equivalent to a and a’ being isotropic. (xii) If a is isotropic and
b=<a,then b <a=a = b sob is isotropic. (xiii) Suppose a # 0 is
isotropic. Then a A @’ = a # 0, so a is not complementing. (xiv) Suppose
a, are closed and Aa, exists. Then Aa, =< a, for all a, s0 (Aay)" = ay = a,
for all a. Hence, (Agy)’ = Aa,. It follows that Aa, = (Aa,)”, S0 A4, is

closed. =
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There are examples that show that the full De Morgan’s law of (iv) does
not hold. The converses of (v) and (xiii) do not hold. Part (xiv) does not
hold if A is replaced by v.

The previous definitions give local properties of individual elements.
We now give some global definitions. A SOP that is a lattice is called a
SOL. A SOP P is complementing, sharp, or closed if every a € P is comple-
menting, sharp, or closed, respectively. A SOP P is nonisotropic if every 0
# a € P is nonisotropic and P is regular if every isotropic a € P is
orthoisotropic. It is easy to show that a closed or complementing SOP is a
unit SOP. A closed, sharp SOP is called an orthoposet.

Lemma 2.2. (i) The following statements are equivalent: P is closed,
" is injective, ' is surjective. (ii) If P is closed and Aq, exists, then va}, exists
and (Aay)’ = wvag. (iii) If P is closed, then a € P is sharp if and only if a
is complementing. (iv) A SOP P is nonisotropic if and only if P is
complementing.

Proof. (1) Applying Lemma 2.1(ix), P is closed if and only if ' is
surjective. If P is closed and a’ = b', thena = a" = b" = b, so ' is injective.
If ' is injective, then a' = (4")’ implies that a = 4", so P is closed. (ii)
Suppose P is closed and Aq, exists. Then Aq, = a, for all a, so a; = (ray)’
for all a. Suppose a;, = b for all «. Then b’ = a, = a, for all a, so b’ =
Aa,. Hence, (Aay) = b” = b, so (ra,)’ = val. (iil) If P is closed, then P
is a unit SOP. Applying Lemma 2.1(v), if a is sharp, then a is complementing.
Conversely, if a is complementing, then a A a’ = 0. Applying (ii) gives

l=0 =(@na’) =a vad =a va

s0 a is sharp. (iv) Suppose P is complementing and a L a. Thena =< a’, so
a = a na' = 0. Hence, P is nonisotropic. Conversely, suppose P is noniso-
tropic. Let a € P and suppose b < a, a’. Then b = a = a" = b',s0 b is
isotropic. Hence, b = 0, so a A @’ = 0 and P is complementing. =

One of the reasons for the terminology “a is sharp” is that a v a’ = 1
is equivalent to the law of the excluded middle. We now give a counterexample
that illustrates various results that do not hold. Let P = {0, 1, a, b, ¢, a’, b,
c'},wherea” =a,b" =b,c"=c¢, 1" =0,c<a,b,c',anda’, b’ <c'. It
is easy to show that P is a closed SOP. Although a and b are complementing,
sharp, and nonisotropic, ¢ = a A b is not complementing, sharp, or noniso-
tropic. Similarly, a’ and 5" are complementing and sharp, but ¢’ = a’ v b’
is not complementing or sharp. Notice that it follows from Lemma 2.1(xii)
that if a is a nonisotropic element of an arbitrary SOP and if a v b exists,
then a v b is nonisotropic.

If P and Q are SOPs, a morphism &: P — Q satisfies the following:
&(0) = 0, a = b implies d(a) = d(b), and d(a') = d(a)’ for alla € P. We
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sometimes call &b a Q-morphism on P. If, in addition, ¢ is bijective and &(a)
= ¢(bh) implies a = b, then & is an isomorphism. A set of Q-morphisms M
on P is order determining if m(a) = m(b) for all m € M impliesa = b. A
sub-SOP P, of a SOP P is a subset of P such that0, 1 € P, and ifa € P,,
then a’ e P,. Notice that a sub-SOP is itself a SOP. A partial Q-morphism
on P is a @-morphism defined on a sub-SOP of P.

An effect algebra is a system (P, 0, 1, D) where @ is a partial binary
operation on P satisfying:

(1) If a ® b is defined, then b P a is defined and b © a = a D b.

(2) Ifa® b and (a D b) D c are defined, then b & c and a & (b D
c¢)are definedand a @ (b D) = (@D b) D c.

(3) Forevery a € P there exists a unique a’ € Psuchthata® a’ = 1.

(4) If a @D 1 is defined, then a = 0.

For an effect algebra P, we write a L b if a @ b is defined. Moreover,
we write a < b if there exists a ¢ € Psuchthat¢ L aand b = a @ c. If
P and Q are effect algebras, an effect morphism is a map ¢: P — ( such
that d(1) = 1 and @ L b implies &d(a) L &(b) and db(a B b) = d(a) D &(b).
An orthoalgebra is an effect algebra in which a L a implies a = 0. The
next lemma shows that the notation a L b is consistent with our previous
usage and that a closed SOP is a generalization of an effect algebra. This
result can be found in Foulis and Bennett (1993, 1994).

Lemma 2.3. (i) If (P, 0, 1, ) is an effect algebra, then a L b if and
only if a = b" and (P, 0, 1, <, ') is a closed SOP. (ii) If (P, 0, 1, D) is an
orthoalgebra, then (P, 0, 1, =, ') is an orthoposet.

Proof. (i) If a L b, then b @ a is defined. Now (b D a) D (b D a)’ =
,sob®a® bDa)] =1 Hence,aD (b B a) =b',s0a =b'
Conversely, if a < b’, then there exists a ¢ € P suchthata L canda® ¢
= b’. Since b L b’, we conclude that b B (a D c) is defined. Hence, b P
a is defined so a L b. To show that (P, 0, 1, <, ") is a closed SOP, since a
@ a' = 1, we conclude that a < 1 for all a € P. Since 1’ © 1 is defined,
1’ = 0. Since @’ @ a = 1, we have a = a". It follows that

0Pa)Pad =0DP@Dba)=0B1=1

s00® a=a"=a Hence, 0 =< agand a = aforalla € P Suppose a =
b and b < a. Then there exist ¢, d € Psuchthatb = a@® canda = b D
d. Hence,

b=bDPd)Dc=bDBADBc)
We conclude that
1=b ®Bb=bOBPAP)=b DPbDADc)=1BWAdDc)
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so d @ ¢ = 0. Hence,
d=d80=dDdDPc)=Wd Dd)Dc=1Dc

so ¢ = 0. It follows that b = a. Suppose that a =< b and b =< c. Then there
existd, e € Psuchthatb = a ® d and ¢ = b D e. Hence,

c=@Dd)De=aDdDe)
so a = c. Finally, if a = b, then there exists ¢ € P such that b = a © c¢. Hence,
1=bPb =@Pc)Pb' =a®(cDb)

We conclude that a’ = ¢ D b’, so b’ = a’. (ii) If a is isotropic, then a 1 a,
so a = 0. It follows that P is nonisotropic, so by Lemma 2.2(iv), P is
complementing. By Lemma 2.2(iii), P is sharp, so P is an orthoposet. =

Of course, an effect morphism ¢: P — @ is a SOP morphism when P
and Q are considered as SOPs.

3. EXAMPLES

This section illustrates the generality and unifying power of SOPs by
exhibiting a large number of examples.

Example 1. Let X be a nonempty set and let r be a symmetric relation
on X. For A € 2%, define

A'=|ye X yrxforallx € A} (3.1)

Then P = (2%, &, X, C, ') is a SOL. Simple examples show that P need
not be a unit SOL and P need not be complementing, sharp, or closed. If r
is also irreflexive, then P is a complementing SOL that need not be sharp
or closed. Conversely, if P is complementing, then r is irreflexive. Indeed,
in this case {x} N {x}' = , so x is not related to x for all x € X. If Py =
[A € P: A = A"}, then it is easy to show that Py is a complete ortholattice.
A s5et-SOP is a SOP of the form (P, &, X, C, ') where P C 2% [In this
definition ' is general and need not have the form (3.1).]

Lemma 3.1. 2%, &, X, C, ') is a set-SOL if and only if there is a
symmetric relation r on X such that A’ has the form (3.1) for all A e 2%,

Proof. We have already noted sufficiency. For necessity, suppose (2%,
J, X, C,")isaset-SOL. Define y rxif y € {x}'. If yrx, then (v} C {x}’,
so {x} C {x}" C [y}'. Hence, x ry, so r is a symmetric relation. For A €
2%, since A = N,., {x}, by De Morgan’s law we have

A'=N{x}'={yeXyrxforalxe A} ®

xeA



Semi-Orthoposets 1147

A set-SOP (P, J, X, C, ") is generated by a symmetric relation r if A’
has the form (3.1) forall A € P. By Lemma 3.1, 2%, &, X, C, ') is always
generated by a symmetric relation.

Lemma 3.2. A set-SOP (P, &, X, C, ') is generated by a symmetric
relation if and only if for every A € P we have

(NU{B:xeBeP}CA
xed
Proof. Suppose (P, &, X, C, ') is generated by a symmetric relation r
onX.If B e P,y € B’, and x € B, then y r x. Hence if

ye (YU {B:xeBeP)
rEA

then y r x for all x € A, soy € A’. Conversely, let (P, &, X, C, ') be a set-
SOP satisfying the given condition. Define x r y if there exists a B € P such
that x e Bandy e B'. If x ry,theny € B' andx € B C (B'),soy rx.
Hence, r is a symmetric relation on X. If y r x for every x € A, then by the
condition, y € A’. If y € A’, then for every x € A we have y r x, so A" has
the form (3.1). =

The next lemma shows that any SOP can be represented as a set-SOP.
Lemma 3.3. Any SOP Q is isomorphic to a set-SOP.
Proof. For a € Q, define (0, a] C Q by

0,al ={beQ:0<b=a)

Let X = (0, 1], P = {(0, a]: a € Q} and define (0, a]’ = (0, a’]. Then P
C 2* and we now show that (P, &, X, C, ') is a set-SOP. Since (0, 0] = &,
we have & e P and it is clear that (0, a] C (0, b] if and only if a = b.
Hence, if (0, a] C (0, b), then b’ = a’, so

(0, 6] =(0,6'1 C10,a'] = (0, a’
Moreover, since a = 4", we have
(0,a] C (0, " = (0, a]"
Define ¢: Q — P by ¢(a) = (0, a). It is clear that ¢ is an isomorphism. =

Example 2. Let Ly(X) be the lattice of open subsets of a topological
space X. For A € Ly(X), define A’ = int(A). Then (Ly(X), &, X, C, ") is a
complementing set-SOL that is not sharp and not closed in general. It is easy
to show that A € Ly(X) is sharp if and only if A is clopen. Moreover, if A
is sharp, then A is closed (A = A”). The next lemma shows that, in general,
this set-SOL is not generated by a symmetric relation on X.
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Lemma 3.4. If X is a Hausdorff space that contains an open set A that
is not topologically closed, then (Ly(X), &, X, C, ') is not generated by a
symmetric relation on X.

Proof. If x, y € X with x # y, then there exist disjoint open sets U/ and
Vsuchthatx € U,y € V. Hence, y € U’ and

{x}=U{B":x € B e Ly(X))
It follows that

A = (U {x}) =N =N UI{B:xeBe LX)
xeA XEeA veA
But A° € A’ since A is not topologically closed. Applying Lemma 3.2 gives
the result. =

Example 3. Let V be a real or complex inner product space with inner
product (x, y) and let L(V) be the lattice of all subspaces of V. Define the
symmetric relation x L y on V by (x, y) = 0 and for A € L(V) define

A'={ye Viy Lxforall x € A}

Then (L(V), {0}, V, C, ") is a complementing SOL that is not sharp and not
closed, in general. It is easy to show that A € L(V) is sharp if and only if
A + A’ = V and that the set of sharp subspaces forms an orthoposet.

Example 4. Let § = [0, 1] € R with the usual order =. For a € §,
define @’ = | — a. Then § is a closed SOL that is not complementing (and
hence, not sharp). In fact, the only complementing (sharp) elements of S are
0 and 1. Moreover, an element of S is nonisotropic if and only if it is greater
than 1/2. Hence, although S is not nonisotropic, it is regular. If P is an
arbitrary unit SOP, then there exists at least one S-morphism on P. Indeed,
define &: P — S by &(0) = 0, &(1) = 1, and &(a) = 1/2 fora # 0, 1. We
can make S into an effect algebra with the same order and ' as follows. For
a, b € §, we say that a D b exists if a + b = 1 and we then define a D b
= a + b. The next lemma, which is a special case of a theorem proved in
Foulis and Bennett (n.d.), shows that there is only one effect morphism from
StoS.

Lemma 3.5. A map &: § — S is an effect morphism if and only if d(a)
=aforalla e S.

Proof. 1t is clear that &(a) = a is an effect morphism. Conversely,
suppose &: § — § is an effect morphism. For n € N, since

l®~--®l= 1 (n summands)
n n
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we have nd(l/n) = 1, so &(1/n) = l/n. If m/n e § is rational, then

|
-D - GBl =2 (m summands)
n n n

Hence, &b(m/n) = md(1/n) = m/n. Let a € S be irrational. If r € S is rational
and a < r, then &(a) = ¢(r). Hence

d(a) = inf(d(r): r rational, a < r}
= inf(r: rrational,a < r} = a
Similarly,
&(a) = sup{r: rrational, r < a} = a
Hence, d(a) = a. =

If P is an arbitrary effect algebra, an effect morphism ¢&: P — [0, 1] is
called a state. We conclude that § = [0, 1] has only one state. Of course,
this single state is order determining for S. If P and Q are effect algebras,
we define their horizontal sum P @& Q to be the disjoint union of P and Q
with their O’s identified and their 1’s identified. For a, b € P & Q we say
that a @ b is defined if both a, b are in P and a ©; b is defined or both a,
b are in Q and a Dy, b is defined. In the first case we define a @ b = a Dp
b and in the second a @ b = a B, b. It is easy to check that P D Q is an
effect algebra. By Lemma 3.5, § € S again has only one state &(a) = a.
But ¢ is no longer order determining, since ¢(a) = &(b) if a is in the first
S and b is in the second S with a = b as elements of S.

Example 5. Let X be a nonempty set and let P = (0, 1]*. For f, g € P,
define f = g if f(x) = g(x) for all x € X and define /' = | — f. Then (P, 0,
I, =, ) is a closed, regular SOL that is not complementing (or sharp)
in general.

Lemma 3.6. (i) A function f € P is sharp if and only if f* = f. (ii) If
X is a topological space and P is the sub-SOP of P consisting of continuous
functions, then f € P, is sharp if and only if fis the characteristic function
of a clopen set. In particular, if X is connected, then the only sharp elements
of Py are 0 and 1.

Proof. (i) It is easy to check that f A g = min(f, g) and fv g = max(/, g).
Hence, the following are equivalent: f is sharp, max(f(x), | — f(x)) = 1 for
all x € X, for all x € X we have f(x) = 1| or f(x) = 0, f> = f. (ii) Clearly,
characteristic functions of clopen sets satisfy f> = f, so by (i), such functions
are sharp. Conversely, if f € Py is sharp, then by (i), f is the characteristic
function of a set A C X. Since A = f~'({1}) and A¢ = f~'({0}), both A and
A° are closed. Hence, A is clopen. =
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We can make P into an effect algebra with the same order and ' as
follows. For f, g € P we say that f D g is defined if f(x) + g(x) = 1 for all
x € X and we then define f g = f + g. For x € X, define the effect
morphism &,: P — [0, 1] by &.(f) = f(x). Then {$,: x € X] is an order-
determining set of states on P. If P and [0, 1] are considered as SOPs, then
{Q¢ x € X} is an order-determining set of [0, 1]-morphisms on P.

Example 6. Let B(H) be the set of bounded self-adjoint operators on a
complex Hilbert space H. For A, B € B(H), we define A = B if (Ax, x) =
(Bx, x) for all x € H and we define A" = I — A. If we let

P={AeBH:0=<A<]

then (P, 0, I, =<, ') is a closed, regular SOP that is not complementing
(or sharp). For example, A = /2 is strongly isotropic and hence A is not
complementing or sharp. The next result characterizes the sharp (and comple-
menting) elements of P. Recall that A € P is a projection if A> = A.

Theorem 3.7. An element A € P is sharp if and only if A is a projection.

Proof. Suppose A is a projection and B € P satisfies A = B, A’ = B.
Then for every x € AH we have

(x, x) = {(Ax, x) = (Bx, x) = {x, x)

Hence, (Bx, x) = ||x||? for every x € AH and similarly (By, y) = |ly||? for
every y € A'H. Since A is a projection, if u € H, then there exist x € AH,
y € A'H suchthat u = x + y. Since x L y, we have ||u]}> = ||x]|* + [ly]|>. Hence,

(Bu, u) = (Bx + By, x + y)
= (Bx, x) + (By, y) + (Bx, y) + (By, x)
= |lxi* + IIyll? + (Bx, y) + (By, x)
= Jlull® + (Bx, y) + (By, x)
Since (Bu, u) =< ||u]|?, we conclude that
(Bx,y) + (By, x) =0
Letting v = x — y we have
(Bv, v) = |[vl* = (Bx, y) — (By, x)
Again, since (Bv, v) < ||v||%, we conclude
(Bx, y) + (By, x) = 0

Hence, (Bu, u) = |lul|? and it follows that B = I. It follows that A v A’ =
I, so A is sharp.
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Conversely, suppose A € P is not a projection. By the spectral theorem,
we have
1 ]
A =J APA@N), A =[ (1 = NPAAN)
0 0
Let f: [0, 1] — [0, 1] be the continuous function defined by f(A) = max(\,
1 ~ \). Define B € P by

i
B = f SINPAAN)
0

It follows that A = B and A’ < B. Since A is not a projection, its spectrum
o(A) € {0, 1}. Hence, there exists a Ay € o(A) with 0 < Ay < 1. Then
PA(A) # 0 for any neighborhood A of \y. Let A = (a, b), where 0 < a <
N < b < 1. Let x € H satisfy x # 0, P4(A)x = x, and hence PAH(A%)x =
0. Then

i

(x5 = |

0

= max FOOlxN? < fixl?

FONPMANx, x) = j SONPAAN)x, x)

A

It follows that B # I. Hence, A v A’ # I and A is not sharp. ®

For a different and independent proof of Theorem 3.7, we refer the
reader to DvureCenskij (n.d.).

We can make P into an effect algebra with the same order and ’ as
follows. For A, B € P we say that A @D B is defined if A + B € P and we
then define A @ B = A + B. For x € H with |x|| = 1, define the state ¢,
on P by &(A) = (Ax, x). Then {b: x € H} is an order-determining set of
states on P. However, as in Example 4, it is easy to show that P €@ P does
not have an order-determining set of states.

Example 7. Let P = {A € B(H): 0 = A = [} as in Example 6. For A
€ P, let ker(A) = {x € H: Ax = 0} and let E,. 4, be the projection onto
ker(A). Define the unary operation ~: P — P by A™ = E\.a; Then (P, 0, ],
=, 7) is a complementing SOP. Indeed, suppose A < B. If x € ker(B), then
(Ax, x) = (Bx, x) = 0. Since A = 0, there exists a unique C = 0 such that
A = C?2 Hence,

ICx}]?> = (Cx, Cx) = (C%x, x) = (Ax, x) = 0

so Cx = 0 and then Ax = C?x = 0. Therefore, x € ker(A), so ker(B) C
ker(A). It follows that B~ < A™. To show that A = A™", we have

—— P~ _ Al
A - Eker(A) - Ellcer(A) =A
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Hence, for all x € H we have
Ax, x) = (A(A™" + A7, (A™7 + A7)

={AA"x, A" Tx + A7x)
=(AA""x, ATTx) + (A7 7x, AATX)
=AA"TX, AT = (AT, ATy
= (A", x)

To show that A A A~ = 0, suppose B = A, A™. Then

B=B""=A"T"=A""

Since A~ is a projection, applying Theorem 3.7 gives B = A™ A A™" = 0.
Hence, B=0,s0A A A~ = 0.

A similar structure can be obtained from Example 5. Let P = [0, 1]*
and for f € P, let f~ = Xy.qs, Where x denotes the characteristic function.
As in the previous paragraph, (P, 0, 1, <, ) is a complementing SOP. Except
in trivial cases, neither this SOP nor the SOP of the previous paragraph is
closed. We also have the identity f~~ = f~' as before.

In general, (P, 0, 1, =<, ', ™) is called a BZ-poser if (P,0, ], =, ') isa
closed, regular SOP, (P, 0, 1, =, 7) is a complementing SOP, and a™~ =
a~' for all a € P. For any BZ-poset, we have a~ = a’. Indeed, since a =
a~~ = a', we have a~ = a™" = a’. Investigations of BZ-posets can be
found in Cattaneo and Nistico (1989), Dalla Chiara and Giuntini (1989),
Giuntini (1990), and Giuntini and Greuling (1989).

4. EXTENSIONS OF PARTIAL MORPHISMS

Let P and Q be SOPs. A partial Q-morphism ¢ on P is maximal if there
are no partial Q-morphisms on P that properly extend ¢.

Lemma 4.1. If P is a SOP, then any partial Q-morphism on P has a
maximal extension.

Proof. Let P, be a sub-SOP of P and let &y be a partial Q-morphism
with domain P,. Let M be the set of all partial Q-morphism extensions of
. Partially order M by ¢, = &, if d; is an extension of ¢,. Let C = {d,:
a € A} be a chain in M. Denote the domain of ¢, by D(d,) and let D =
U(D(dy): a € A}. Define ¢: D — Q as follows. If a € D, then a € D(d,)
for some a € A and we define d(a) = d.(a). We first show that ¢ is well
defined. Suppose a € D(d,) N D(dg). Without loss of generality, we can
assume that ¢, =< ¢p. Hence, d,(a) = dg(a) and ¢ is well defined. Next,
D is a sub-SOP of Psince 0, 1 € Dand if a € D, then a € D(¢,) for some
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a € A,s0a’ € D(b,) C D. It is also clear that ¢ is an extension of ¢, for
all @ € A. To show that ¢ is a partial @-morphism on P, let a € D. Then
a € D(d,) for some a € A, so a' € D(d,) and

d(a') = dula’) = du(a) = da)

Suppose a, b € D with a = b. Then a € D(d,) and b € D(dy) for some
a, B e A. Without loss of generality, assume that g < ¢,. Then a, b €
D(d,) and

d(a) = dy(a) = & (B) = d(b)

Clearly, &(0) = 0. Hence, & € A and & is an upper bound for C. By Zorn’s
lemma, /1 has a maximal element. =

The next result shows that any SOP has an abundance of [0, 1]-morph-
isms, where [0, 1] is the SOP defined in Example 4.

Theorem 4.2. If P is a SOP, then any partial [0, 1]-morphism ¢, on P
has an extension to a [0, 1]-morphism on P.

Proof. Applying Lemma 4.1, there exists a maximal partial [0, 1]-
morphism ¢ that extends ¢&,. Assume that D($) # P, and let a € P\D(d).
Suppose a’ (and hence, a”) is in D($). If P, = D(d) U {a}, then P, is a
sub-SOP of P that properly contains D(¢). Define ¢,: P, — [0, 1] by &(b)
= ¢(b) if b € D(d) and b(a) = d(a”). Then ¢, properly extends ¢ and
(b)) = 1 — &(b) for every b € P,. To show that ¢, is a partial [0, 1]-
morphism, let b, ¢ € D(¢$) with b = ¢. Then

bi(b) = d(b) = d(c) = di(c)
If b € D(d) and b = a, then a' = b’, so
(@) = d(a) = &b') = &i(b")
Hence,
dib) = 1 = &y(b") = 1 — dy(a’) = di(a)

Similarly, a =< b implies that ¢(a) = ¢&(b). Hence, ¢, is a partial [0, 1]-
morphism that properly extends ¢. This contradicts the maximality of ¢. We
conclude that a’, a” € P\D(). Let P, = D($) U {a’, a’}. Then P, is a sub-
SOP of P and we define &,: P, — [0, 1] as follows. If b € D(d), di(b) =
$(b). Let

Ay
A2

sup{db(b): b € D(d), b < d"}
inf{db): b € D(d), b > a"}
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If b,c € D(d) and b < a” < ¢, then &b(b) = d(c). Hence, \; = A\, If A =
172 = X5, let A = 1/2, and otherwise, let A = X\;. Notice that A\| = A < \,.
Define ¢,(a”) = A and ¢ (a’) = 1 — \. Then $,(c') = 1 — & (c) for all ¢
e Pi. If c, d € D(d) and ¢ = d, then &,(c) = & (b). Suppose a’ = a". If
A = 1/2, then &,(a") = &,(a’) = 1/2. If X > 1/2, then &,(@”) = \; > 1/2,
so & (a’) < 1/2 and ¢,(a’) < & (a"). Suppose A < 1/2. Then there exists a
b € D(d) such that a" < b and &b(b) < 1/2. But b’ = a’' = a" < b, so d(b’")
= ¢(b) < 1/2, which is a contradiction. Suppose a” = a'. If X\ = 1/2, we
again have &,(d") = &(a’) = 1/2. If X < 1/2, then b,(a”") = \; < 1/2, so
bi(a’) > 1/2. Hence, ¢,(a”) < &y(a’). Suppose N > 1/2. Then there exists
ab e D(d) such that b < a" and d(b) > 1/2. But b’ = a’ = a" > b, so
&(b') = &(b) > 1/2, which is a contradiction. Suppose ¢ € D(d) and ¢ <
a”. Then

bi(c) = dlc) = A = X = dy(ad")
Suppose ¢ € D(d) and a” < ¢. Then
bi(c) = dlc) = A = N = d,(a")
Suppose ¢ € D(¢d) and ¢ < a’. Then @” = ¢', so by the above, d,(a") =
&,(c"). Hence,
bi(c) =1 = dy(c) = 1 ~ dy(a") = di(a)
Finally, suppose ¢ € D(d)anda’ < c¢.Thenc¢’ = a”,s0d,(c’) = ¢,(a"). Hence,
di(c) =1 = di(c) =1 = dy(a") = bi(a')

We concluded that ¢, is a partial [0, |]-morphism that properly extends ¢.
This again contradicts the maximality of ¢. Hence, D(db) = P, so & is a
[0, 1]-morphism on P that extends ¢y, =

To illustrate the utility of the abundance of [0, 1]-morphisms, we now
characterize various properties in terms of these morphisms. Other results of
this type will be given in later sections.

Corollary 4.3. Let P be a SOP and let M be the set of all [0, 1]-morphisms
on P. (i) a € P is nonisotropic if and only if there exists an m € M such
that m(a) = 1. (ii) a € P is isotropic if and only if m(a) < 1/2 forall m €
M. (iii) a € P is strongly isotropic if and only if m(a) = 1/2 for all m € M.
(iv) P is complementing if and only if for every a # 0 in P there exists an
m € M such that m(a) = 1. (v) P is a unit SOP if and only if for every a
# 0 in P there exists an m € M such that m(a) # 0.

Proof. (1) Suppose a € P is nonisotropic and let P, be the sub-SOP
given by

Pl = {Oa 19 1’7 a, a,’ a"}
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Sincea < |, we have |’ = a’, and sincea’ = |, wehave |’ = 4" Ifa =
', thena = | = 1" = a’, which is a contradiction.

Case 1. Assume that a and a' are related. Then a’ < q, so @' = a".
Define the partial [0, 1]-morphism m; with domain P, by m,(0) = m (1) =
my(a) = 0, m(1) = my(a) = m(a”) = 1. Applying Theorem 4.2, we can
extend m; toan m € M.

Case 2. Assume that a and a’ are unrelated but @’ and a” are related.
We cannot have @” < a’, since then a < a”" < a’. Hence, a’ = a” and we
proceed as in Case .

Case 3. Assume that g, a’ and a’, " are unrelated. Again proceed as
in Case 1. If a is isotropic, then a = a’'. Hence, for any m € M we have
m(a) = m(a') = 1 — m(a), so m(a) = 1/2. We conclude that m(a) # 1 for
every m € M. Parts (ii) and (iii) follow from (i). Part (iv) follows from (i)
and Lemma 2.2(iv). (v) If P is a unit SOP and a # 0, then the {0, I]-morphism
¢ defined in Example 4 satisfies ¢p(a) # 0. Conversely, if P is not a unit
SOP, then I’ # Oand yet m(1'y =1 —m(l) =0 forallm e M. =m

5. CLOSED, REGULAR SOPs

We have seen from Examples 4—6 that there are important closed, regular
SOPs. In this section we characterize such SOPs in terms of their [0, 1]-
morphism sets and their representations as function spaces. Although the
proof of the next result is tedious, we present it in detail because various
parts will be needed for subsequent theorems.

Theorem 5.1. If P is a closed, regular SOP, then P has an order-determin-
ing set of [0, 1]-morphisms.

Proof. Let M be the set of all [0, |1]-morphisms on P. It suffices to show
that if a, b € P with a £ b then there exists an m € M such that m(a) >
m(b). Assume that a & b and form the sub-SOP

P,=1{0,1,a,b,a,b")

It suffices to find a partial {O—1]-morphism m with domain P; such that m(a)
> m(b) because we can then apply Theorem 4.2 to extend m to a [0-1]-
morphism on P. In the following we always have m(0) = 0, m(1) = 1.

Case 1. Assume that a, b, a’, b’ are nonisotropic.

()b <a, b=ad.Then b < a = b’, contradiction.

(i) b < a,a’ = b. Then a’ = b < a, contradiction.

(iii) b < a, b and a’ unrelated. Then a’ < b'. Let m(a) = m(b") = 1,
m(b) = m(a’) = 0.

(iv) b and a unrelated, b = a'. Let m be as in (iii).
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(v) b, a unrelated and b, a’ unrelated. Let m be as in (iii).

Case 2. Assume that a, b, a’ are nonisotropic and b’ = b.

(W)b<a b=a' Then b < a = b’, contradiction.

(ii) b < a,a = b. Then a’ = b < a, contradiction.

(iii) b < a, b and a' unrelated. Then b’ = b < a, contradiction.

(iv) b and a unrelated, b =< a’. Then a < b’ < b, contradiction.

(v) b, a unrelated and b, a’ unrelated. Let m(a) = 1, m(a’) = 0, m(b)

= m(b’) = 1/2.

Case 3. Assume that a, b, b’ are nonisotropic and a’ =< a.

(1) b <a,b=ada.Then b < a = b’, contradiction.

(ii) b < a,a’ = b. Let m be as in Case 1(iii).

(iii) b < a, b and a’ unrelated. Let m be as in (ii).

(iv) b and a unrelated, b < a’'. Then b = a' = q, contradiction.
(v) b, a unrelated and b, a’ unrelated. Let m be as in (ii).

Case 4. Assume that a, b', a’ are nonisotropic and b = b'.
(1) b < a,b = a'. Let m be as in Case 1(iii). For (ii))—(v) let m be as

in (i).

Case 5. Assume that b, a’, b’ are nonisotropic and a =< a’.
)b<a,b=a'. Then b < a < b’, contradiction.

(i) b<a,a = b. Then b < a = a' = b, contradiction.

(i) b < a, b and a’ unrelated. Then b < a < a’, contradiction.

(iv) b and a unrelated, b = a’. Let m(a) = m(a’) = 112, m(b) = 0,

m(b') = 1.

(v) b, a unrelated and b, a’ unrelated. Let m be as in (iv).

Case 6. Assume that a, b are nonisotropic and a’ = a, b° = b. Since

P is regular, we have a’ < b.

(1) b < a. Let m be as in Case 2(v).
(1) b and a unrelated. Let m be as in (i).

Case 7. Assume that a’, b’ are nonisotropic and a =< a’, b = b’. Since

P is regular, we have a < b'.

(1) b < a. Let m be as in Case 5(iv).
(11) b and a unrelated. Let m be as in (i).

Case 8. Assume that a and a’ are nonisotropic and b = b'.
(i) b < a. Then b* < a. Let m be as in Case 2(v).
(i1) » and a unrelated. Then b and a’ are unrelated. Let m be as in (i).

Case 9. Assume that b and b’ are nonisotropic and a = a’.
(1) b < a. Then b < a'. Let m be as in Case 5(iv).
(1) & and a unrelated. Then b and a’ are unrelated. Let m be as in (i).
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Case 10. Assume that a and b’ are nonisotropic and b = b’, a = a'.
Let m be as in Case 1(iii).

Case 11, Assume that a’ and b are nonisotropic and a < a’, b’ < b.
Since P is regular, a =< b, which is a contradiction.

Case 12. Assume that a is nonisotropic and b, a’, b" are isotropic. Then
b=">b",b<a and a’ < b. Let m be as in Case 2(v).

Case 13. Assume that b is nonisotropic and a, a’, b’ are isotropic. Then
a = b, which is a contradiction.

Case 14. Assume that a’ is nonisotropic and a, b, b’ are isotropic. Then
a < b, which is a contradiction.

Case 15. Assume that b’ is nonisotropic and a, b, a’ are isotropic. Let
m be as in Case 5(iv).

Case 16. Assume that a, b, a’, b’ are isotropic. Then a = b, which is
a contradiction. =

Let X be a nonempty set and let Q be a SOP. For f, g € QX define f <
g if f(x) = g(x) for all x € X and define f’ by f'(x) = f(x)' for all x € X.
Moreover, we define 0, | € Q¥by O(x) =0, I(x) = | forx € X. Let P C
Q¥ satisfy 0 € P and f € P implies f' € P. Then (P, 0, 1, =, ') is a SOP
that will call a Q-function SOP. The [0, 1]-function SOPs are particularly
interesting because they correspond to a fuzzy logic or a fuzzy set theory.
We shall presently show that the class of closed, regular SOPs coincides with
the class of [0, 1]-function SOPs.

It is also of interest to consider the sub-SOP {0, 1} C [0, 1]. Of course,
{0, 1} is the simplest nontrivial SOP. Let P be a {0, 1}-function SOP. If we
identify a set with its characteristic function, then P becomes a set-SOP.
Moreover, in this case, if A € P is considered as a set, then A" = A°. We
then call (P, O, X, C, ©) a standard set-SOP. We shall also show that the
class of orthoposets coincides with the class of standard set-SOPs.

Theorem 5.2. (i) A SOP P has an order-determining set of Q-morphisms
if and only if P is isomorphic to a Q-function SOP. (ii) Suppose P has an
order-determining set of Q-morphisms. If Q is a closed, regular, complement-
ing, sharp, unit SOP, respectively, then P has these properties, respectively.

Proof. (1) Suppose P has an order-determining set of Q-morphisms M.
Define ¢: P — QM by [d(a)](m) = m(a) and let F = {$(a): a € P}. Since

[b(a))(m) = m(a") = m(a)’ = [d(a@)](m)" = [d(a)'1(m)

for all m € M, we have $(a’) = d(a)’. We conclude that f € F implies f’
e F. Since $(0) = 0, we have 0 € F,so (F, 0, 1, =, ') is a O-function SOP.
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If a, b € P with a # b, since M is order determining, there exists an m €
M such that m(a) # m(b). Hence, [d(a)](m) F [d(b)](m), so d(a) #* d(b).
We conclude that ¢: P — F is bijective. To show that ¢ is an isomorphism,
suppose a, b € P with a = b. Then

[d(@](m) = m(a) = m(a) = [$(b)](m)

for all m € M, so d(a) = &(b). Finally, if d(a) = &(b), then for any m €
M we have

m(a) = [d(a)l(m) = [d(b)](m) = m(b)

Since M is order determining, we have a = b. We conclude that P and F
are isomorphic. Conversely, suppose there exists an isomorphism ¢: P — F,
where F C Q% is a Q-function SOP. For x € X, define m,: P — Q by mJa)
= [$(@)](x). Then m(0) = [$(0)](x) = O and

mya') = [b(@")](x) = [d(a)'J(x) = [d(@)](x)' = mla)’
If a, b € P with a = b, then d(a) = d(b) so

mya) = [$(a))(x) = [$(B))(x) = m(b)

Hence, for any x € X, m, is a Q-morphism on P. Suppose m,(a) = mb)
for all x € X. Then

[d@](x) = ma) = m(b) = [d(b)](x)

for every x € X, so d(a) = &(b). It follows that a < b, so (m: x € X} is
an order-determining set of Q-morphisms on P. (ii) Let M be an order-
determining set of Q-morphisms on P. Assume that Q is closed. Then for
any a € P, m € M, we have m(a") = m(a)’ = m(a). Since M is order
determining, we have @” = q, so P is closed. Assume that Q is regular. Let
a,b e Pwitha 1L aand b 1L b. Then m(a) L m(a) and m(b) L m(b) for
every m € M. Hence, m(a) 1 m(b), so m(a) = m(b)’ = m(b") for every m
e M. Since M is order determining, a = b’, so a 1 b. Assume that Q is
complementing. If b = a, a’, then m(b) = m(a), m(a)’. Hence, m(b) = m(a)
A m(a)’ = 0, so m(b) = O for every m € M. Hence, b = 0, so P is
complementing. The proof that Q is sharp implies P is sharp is similar.
Assume that Q is a unit SOP. Then m(1') = m(1)’ = 1" =0 forallm € M.
Hence, |’ = 0, so P is a unit SOP. =

Theorem 5.3. For a SOP P, the following statements are equivalent. (i)
Pis closed and regular, (ii) P has an order-determining set of {0, 1]-morphisms,
(iii) P is isomorphic to a [0, 1]-function SOP.
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Proof. That (i) implies (i1) is given by Theorem 5.1. That (ii) and (iii)
are equivalent is given by Theorem 5.2(i). Since [0, 1] is closed and regular,
that (ii) implies (i) is given by Theorem 5.2(ii). =

Another interesting sub-SOP of [0, 1] is {0, 1/2, 1} and of course this
sub-SOP is closed and regular. An examination of the proof of Theorem 4.2
and Theorem 5.1 shows that a closed, regular SOP has an order-determining
set of {0, 1/2, 1}-morphisms. This is analogous to a three-valued logic. We
thus have the following corollary.

Corollary 5.4. For a SOP P, the following statements are equivalent. (i)
P is closed and regular, (ii) P has an order-determining set of {0, 1/2, 1}-
morphisms, (iii) P is isomorphic to a {0, 1/2, 1}-function SOP.

We now consider orthoposets. Since an orthoposet is nonisotropic, Case
1 of the proof of Theorem 5.1 and Theorem 5.2 give the following corollary.
That (i) implies (iii) in this corollary has been proved by Katrnoska (1982).

Corollary 5.5. For a SOP P, the following statements are equivalent. (i)
P is an orthoposet, (ii) P has an order-determining set of {0, 1}-morphisms,
and (iii) P is isomorphic to a standard set-SOP.

6. CLOSED SOPs

We have seen in Section 5 that a closed, regular SOP has an order-
determining set of [0, 1]-morphisms. Theorem 5.2(ii) shows that this result
cannot hold for an arbitrary closed SOP P. However, we can obtain a slightly
weaker result if P contains at most one strongly isotropic element. A set of
Q-morphisms M on a SOP P is separating if m(a) = m(b) forallm e M
implies that a = b.

Theorem 6.1. For a SOP P, the following statements are equivalent. (i)
P is closed and contains at most one strongly isotropic element, (ii) P has a
separating set of [0, 1]-morphisms, (iii) there is a bijective morphism from
P onto a [0, 1]-function SOP.

Proof. Suppose (i) holds and let M be the set of all [0, 1]-morphisms
on P. To prove (ii), it suffices to show that if a, b € P with a # b, then
there exists an m € M such that m(a) # m(b). We can assume without loss
of generality that a # b. Proceeding as in the proof of Theorem 5.1, we form
the sub-SOP

P, =1{0,1,a,b,4d' b}

As before, it suffices to find a partial [0, 1]-morphism m with domain P,
such that m(a) # m(b). Cases 110, 12, 15, and 16 in the proof of Theorem
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5.1 apply unchanged. In Case 11, we let m(a) = m(b') = 0 and m(a’) =
m(b) = 1. In Case 13, we let m(a) = m(a’) = 112, m(b') = 0, m(b) = 1. In
Case 14, we let m(b) = m(b") = 1/2, m(a) = 0, m(a’) = 1. That (ii) and
(iii) are equivalent is similar to the proof of Theorem 5.2(i). Finally, suppose
(i) holds and M is a separating set of [0, 1]-morphisms on P. If a, b € P
are strongly isotropic, then m(a) = m(b) = 1/2 for every m € M. Hence,
a=b. m

Letting S, = {0, 1}, S; = (0, 1/2, 1}, we have seen that an orthoposet
has an order-determining set of S;-morphisms and a closed, regular SOP has
an order-determining set of S,-morphisms. Moreover, it is clear that S, and
S, are the simplest SOPs with these properties. We now seek a SOP §, that
has this property for an arbitrary closed SOP. By Theorem 5.2(ii), S; must
be closed, but not regular. The simplest such SOP is §; = {0, I, a, B, where
o =o', B =B (a and B are strongly isotropic), and «, 3 are unrelated.
Notice that S, is the horizontal sum S, = §, @ S,.

Theorem 6.2. If P is a closed SOP, then any partial S,-morphism ¢¢ on
P has an extension to an S,-morphism on P.

Proof. Applying Lemma 4.1, there exists a maximal partial S;-morphism
¢ that extends ;. Assume that D(¢) # P and let a € P\D(¢). Then g’ €
P\D(d) and we form the sub-SOP P, = D(d) U {a, a'). Define ¢,: P, —
S, as follows. If & € D(d), b,(b) = d(b). Noticing that S, is a lattice, let

A = v{d): b e D(d), b <a)
N = Ald(b): b e D(d), b > a}
We then have \; = \,, Define

0 if AN =A=0

_ 1 if )\‘z)\z=l
$i(a) = a if My=0,0=1 orif Nor\;=a

B if Norha =8

and define ¢(a’) = ¢(a)’. Notice that \; = ¢(a) = A, and ¢,(c’) = d,(¢)’
forall c € P,. If b, ¢ € D(¢) with b = ¢, then (b)) = d,(c). Suppose that
a < a'. Then ¢(a) = &,(a’) unless &,(a) = 1. But then \; = 1, so there
exists a b € D(d) such that b < a and d(b) = 1 or there exists b, ¢ € D(d)
such that b, ¢ < a and $(b) = a, d(c) = B (or vice versa). In either case
we have a = a’ < b'. Since A\, = 1, we conclude that $(b') = 1, which is
a contradiction. Suppose that a’ = a. Then &y(a’) = b(a) unless di(a) =
0. But then A; = 0, so there exists a b € D(db) such that a < b and $(b) =
0 or there exist b, ¢ € D(¢) such that a < b, ¢ and d(b) = o, db(c) = B (or
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vice versa). In either case b’ < a’ =< a. Since A\, = 0, we have &(b') = 0,
which is a contradiction. Next suppose that b € D(d) with b < a. Then &(b)
=\ = dy(a). If b € D(d) with a < b, then b(b) = A, = ¢,(a). Suppose
b e D(d) with b < a’. Then a < b, so d,(a) = d(b') = $(b)'. Hence,
&(b) = dy(a) = &,(a’). Finally, suppose b € D(¢d) with a’ < b. Then b’
< a,s0 &(b) = &(b') = dy(a). Hence, ¢,(a’) = b(a)’ = (b). We conclude
that ¢, is a partial S,-morphism on P that properly extends ¢. This contradicts
the maximality of &. Hence D(¢) = P. =

Corollary 6.3. For a SOP P, the following statements are equivalent. (i)
P is closed, (ii) P has an order-determining set of S,-morphisms, and (iii) P
is isomorphic to an S,-function SOP.

Proof. Suppose (i) holds and let M be the set of all S,-morphisms on P.
We proceed as in the proof of Theorem 5.1, except we now apply Theorem
6.2 and show that if @ £ b, then there exists an m M such that m(a) &
m(b). Cases 1-10, 12, and 15 in the proof of Theorem 5.1 apply by replacing
1/2 with a. In the other cases, we let m(a) = m(a’) = a, m(b) = m(b’) =
B. We conclude that (i) implies (ii). That (ii) and (iii) are equivalent follows
from Theorem 5.2(i). That (ii) implies (i) follows from Theorem 5.2(ii). =

As in Example 4 of Section 3, let W be the horizontal sum W = [0, 1]
@ [0, 1]. Then W is an effect algebra and W can also be considered as a
closed SOP with the same order and ’. Since S, is a sub-SOP (or sub-effect
algebra) of W, we know that any closed SOP has an order-determining set
of W-morphisms. Moreover, Corollary 6.3 holds with §, replaced by W. We
have introduced W because W-valued effect morphisms are more useful than
S,-valued effect morphisms. The reason for this is that W contains long strings
of sums, while S, does not. Our next theorem shows that any closed SOP
admits a canonical imbedding into an effect algebra. Let L, be a subset of
an effect algebra L. We say that L, generates L if the smallest sub-effect
algebra of L that contains L, is L itself. We shall also need the following
result. If L is an effect algebra and X is a nonempty set, we can organize L*
into an effect algebra as follows. For f, g € L¥, we say that f @ g exists if
f(x) @ g(x) exists for all x € X and we then define f @ g(x) = f(x) © gx).
Define O(x) = 0 and 1(x) = 1 forall x € X and f'(x) = f(x)' forall x € X.
It is easy to show that (L%, 0, 1, @) is now an effect algebra with order f <
gif f(x) = g(x) forall x € X.

Theorem 6.4. Let P be a closed SOP and let M be an order-determining
set of W-morphisms on P. Then there exists an effect algebra Q, an order-
determining set of W-valued effect morphisms yi(M) on Q, a SOP isomorphism
¢: P — &(P) C Q such that $(P) generates Q, and a bijection yi: M — y(M)
such that yi(m)(d(a)) = m(a) for every a € P, m € M. If Q) is an effect
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algebra with maps &2 P — @, ¥;: M — (M) satisfying the previous
conditions, then Q, and Q are isomorphic. Moreover, if @, b € P witha L
b and there exists a ¢ € P such that m(c) = m(a) @ m(b) for all m € M,
then &(c) = d(a) D d(b).

Proof. Applying Corollary 6.3 and the proof of Theorem 5.2(i), we have
that the map ¢: P — W* given by d(a)(m) = m(a) is a SOP isomorphism
onto its range d(P). Now WH is an effect algebra and we define Q to be the
sub-effect algebra of W* generated by &(P). For m € M and f € Q we
define y(m)(f) = f(m) € W. Then for any a € P, m € M, we have

Y(m)(d(a)) = d(a)(im) = m(a)

Now Wi(rn) is a W-valued effect morphism on Q since (m)(0) = O(m) = 0
and if f D g exists, f, g € Q, then

bm)(f D g) = (fO g)(m) = fm) © glm) = V(m)(f) © Y(m)(g)

To show that : M — (M) is bijective, suppose b(m;) = U(m,). Then for
any a € P we have

my(@) = b(m)($(a)) = b(ma)(d(a)) = my(a)

Hence, m; = m,. To show that (M) is order determining on Q, suppose f,
g € Q satisfy d(m)(f) = Y(m)(g) for every m € M. Then f(m) = g(m) for
everym € M, so f < g.

Let Q, be an effect algebra with maps &;: P — @), b: M — (M)
satisfying the given conditions. Define the map B: Q, = W¥ 1™ by B(q)(,(m))
= s (m)(q). It is easy to show that 3 is an effect isomorphism from @, onto
B(Q)). Define a: W¥ — W™ by a(f)(i(m)) = f(m). Again, it is easy to
show that « is an effect isomorphism. For any a € P, m € M, we have

Bld1(@)](Wi(m)) = bi(m)[di(@)] = m(a) = d(a)(m)
a[d(@)](W(m))

Hence, a[d(P)] = Bldy(P)], so (P) = a™' ° B[d,(P)]. Since &y(P) C O,
we have ¢(P) C a™ o B(Q,). The fact that $(P) generates Q now gives that
Q C a e B(Q)). Similarly, B[Q,(P)] C a(Q) and since ¢,(P) generates Q,,
we have B[Q,] C a(Q). Hence, O = o™ ! o B(Q)) and a~ ' ° B is an effect
isomorphism from @, to Q.

Finally, suppose a, b € P satisfy the last statement of the theorem. Then
for every m € M, we have

d(c)(m) = m(c) = m(a) D m(b) = db(a)(m) D b(b)(m)
= [d(a) D d(b)1(m)
Hence, ¢(c) = ¢&(a) D db). =

i
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Let (P, M) be a pair where P is a closed SOP and M is an order-
determining set of W-morphisms on P. Then Theorem 6.4 states that there
exists a unique (up to isomorphism) effect algebra Q that has an order-
determining set of W-valued effect morphisms into which P can be canonically
imbedded. Moreover, if there are elements of P that “want” to have sums,
then the imbedding preserves such sums. In particular, if P is already an
effect algebra and the elements of M are effect morphisms, then Q merely
reproduces P.

If P is a closed, regular SOP and M is an order-determining set of [0,
1]-morphisms on P, then (M) in Theorem 6.4 becomes an order-determining
set of states on Q. If P is an orthoposet and M is an order-determining set
of {0, 1}-morphisms on P, then Theorem 6.4 gives the following strong
statement. The orthoposet P can be imbedded into an orthoalgebra of sets
(0, D, X, D) where A @ B is defined if and only if A and B are disjoint and
in this case A@® B = A U B.

7. SHARP, UNIT SOPs

Although closed or complementing SOPs must be unit SOPs, this does
not hold for sharp SOPs. For example, let P = (0, 1, 1}, where 0 < |’ <
1. Then P is not a unit SOP, but P is sharp.

In this section, we assume that P is a sharp, unit SOP. We require the
unit condition in order to avoid tedious complications. This condition also
has the advantage of making P complementing. Continuing our previous
program, we introduce the simplest sharp, unit SOP that is not closed. This
is the SOP S5 = (0, a, a’,a", 1}, where 0 < a <a"< 1,0 < a’" <1,
and there are no other relations. As usual we obtain the following results.

Theorem 7.1. If P is a sharp, unit SOP, then any partial S;-morphism
¢, on P has an extension to an S;-morphism ¢ on P.

Proof. As before, there exists a maximal, partial S3-morphism ¢ on P
that extends d¢,. Suppose D(¢d) # P and let a € P\D(¢). Suppose a’ (and
hence a") is in D(¢). Then P, = D(d) U {a} is a sub-SOP of P. Define &;:
P, = S; by &,(b) = &(b) if b € D(d) and define

if &) = 0; 0 ifda) =1

if &@)=a and v{d®): b e D). b=a}=a
" if &@)=co and v{db): b e D(d),b=a} £a
! if ¢@@’)=7ao"

bi(a) =

R R R —

Notice that ¢(b) # a if b € D(d) and b is closed. Indeed, otherwise
a = db) = &) = ¢(b)" = "



1164 Gudder

which is a contradiction. Also, if b € D(d) with b < q, then a’ = b’, so
d(a’) = $(b'). Hence, if d(a’) = o’ or 1, then &(b') = o’ or 1, so d(b) =
0, o, or a”. Therefore,

v{d®b). b € D(db),b =a} =0, a,0ora’

Now ¢, extends ¢ and &,(b") = &b,(b) for every b € P.. If b, ¢ € D(d)
with b = ¢, then ¢,(b) = by(c). If b € D(d) with b < q, thena” = b’, s0
d(a’) = o). If d(a’) = 0, then dy(a) = 1, so d(b) = dy(a). If d(a’) =
I, then &(b) = &(b') = 1, so &(b) = 0. Hence, &,(b) = b,(a). If d(a’) =
a’, then $(b’) = o' or 1. If d(b") = o', then &b(b) = a or &”. If d(b) = «,
then ¢,(b) = ¢;(a) because d (@) = a or «”". If b(b) = «”, then &,(b) =
di(a). If db') = 1, then db(b) = 0 = d(a). If d(a’) = a", then &b(b') =
a” or 1, so d(b) = a' or 0. We again have &,(b) = d,(a). Next suppose that
a < b.Then b’ = a’, so &(b') = d(a’). If d(a’) = o', then &b(b’) = o’ or
0. If &(b') = o', then d(b) = a or o”. In the case of d(b) = o”, we have
&i(a) = &,(b) since d(a) = a or a". Suppose d(b) = a. If d,(a) = «, then
di(a) = &y(b). If d((a) = o, then there exists a ¢ € D(¢) with ¢ < g and
&(c) = a”. Then ¢ < a < b, so $(b) = «”, which is a contradiction. If d(a’)
= o”, then $(b’) = 0 or o”. Hence, d(b) = 1 or «'. In either case ¢ (a) =
&,(b). We conclude that ¢, is a partial S3-morphism that properly extends
¢, which is a contradiction.

We then have a, a’, a” € P\D(d). Form the sub-SOP P, = D(¢) U
{a', a"}. Define ¢,: P, > S; by &,(b) = &(b) if b € D(d), d(a’) = 1 if
there exists a b € D(¢) with a” < b and d(b) = a and otherwise

di(a’) = v{d®): b € D(d), b' <a'} (1.1)

Finally, define ¢,(a") = &;(a’)’. Then &(b") = &y(b)’ for every b € P,.
Suppose that b € D(d) with b < a’. Then b" < a’, so d(b) = d(b") =
&di(a'). Suppose that b € D(d) with a' < b. If ¢' € D(d) with ¢’ < a’, then
¢’ < b. Hence, &(c") = &(b). Hence, if &b,(a’) is given by (7.1), then

d(b) = v{d(c'): ¢ € D(d), ¢' <a'} = di(a)

Otherwise, there exists a ¢ € D(d) with @” < ¢ and ¢(c) = a, in which case
di(a’) = 1. But then b" = a" < ¢, so &(b’) = ¢(c¢) = a. Hence, d(b') =
0, so d(b) = 1 and again d;(a’) = &(b). Now suppose that b € D(d) with
b < a". Then a' = b', so d,(a@’) = &(b"). Hence, d(b) = db(b") = ¢ (a").
Finally, suppose that & € D(d) with a” < b. Since b’ = a’, we have &(b')
= ¢(a’). Suppose that ¢(a’) = o'. Then $(b’) = O or a’, so d(b) = 1, a,
or o". If &(b) = 1 or ", then d(a”) = a” = G(b). If &(b) = «, then b,(a’)
= 1, which is a contradiction. Suppose that ¢,(a’) = «". Then &(b') = 0
or a”, so ¢(b) = 1 or a’. In either case, &,(a@") = o' = d(b). If d,(a’) =
I, then ¢;(a") = 0 = &(b). If ¢y(a’) = 0, then &(b") = 0. Hence, d(b) =



Semi-Orthoposets 1165

I and &(a”) = &(b). We conclude that ¢, is a partial S3-morphism that
properly extends ¢, which is a contradiction. Therefore, D(¢) = P and ¢ is
an Sy-morphism on . m

Theorem 7.2. If P is a sharp, unit SOP, then P has an order-determining
set of S;-morphisms.

Lest we try the reader’s patience, we omit the somewhat tedious proof.
By now the proof of the following theorem is standard.

Theorem 7.3. For a SOP P, the following statements are equivalent. (i)
P is a sharp, unit SOP, (ii) £ has an order-determining set of S;-morphisms,
and (iii) P is isomorphic to an Ss-function SOP.

We close this section by mentioning that this program can be carried
on to include complementing SOPs. For these we introduce a simple comple-
menting SOP that is not sharp. This is the SOP S, = {0, I, a, w, ©’}, where

D=ad' <o <a<a =1, O<w=ow<a<Il

and there are no other relations. The counterparts of Theorems 7.1-7.3 hold
for complementing SOPs with S; replaced by S,. Of course, one might like
to carry this program to the extreme and prove such theorems for an arbitrary
SOP, but this appears to be quite difficult.

8. BASIC TENSOR PRODUCTS

This section introduces the concept of tensor products of SOPs, presents
some examples, and constructs various basic tensor products.

If P, 0, and R are SOPs, a bimorphism o: P X Q — R satisfies: (1) if
a, b e P c,d e Q, then a = b implies that a(a, ¢) = a(b,c)and c = d
implies that a(a, ¢) = a(a, d); (2) a(a, ¢) L ala’, d) forall ¢, d € Q and
afa, c) L a(b, c’) foralla, b € P; 3) ala, 1) = a(a’, 1) and a(l, b)’ =
a(l,b’) foralla e P, b e Q.

Lemma 8.1. Let a: P X Q — R be a bimorphism. (i) If a, » € P and
c,d € Q witha < b, and ¢ < d, then a(a, ¢) = a(b, d). (i) afa, 1) =
afa’, 1) and a(l, b))’ = «a(l, b’) foralla € P, b € Q. (iii) If a L b, then
aa, ¢) L ab,d) forallc,d € Q and if ¢ L d, then a(a, ¢) L a(b, d) for
all a, b € P. (iv) If R is a unit SOP, then a(a, 0) = a0, b) = 0 for all a, b
€ P. (v) If R is a unit SOP, then «a(-, 1) and a(l, -) are morphisms from P
and Q, respectively, into R.

Proof. (1) Applying (1), we have
a(a, ¢) = ab, ¢) = a(b, d)
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(ii) Applying (2), we have a(a’, 1) = a(a, 1)' and the result follows from
(3). (i) If @ L b, then a = b’, so by (1) and (2) we have

ala, c) = ab’, ¢) = a(b, d)’
Hence a(a, ¢) L a(b, d). (iv) Applying (i) and (it), we have
a0, 1Y =a@', 1) =a(l, 1) = 1
Since R is a unit SOP, we obtain
al, D=a@, H)'=1"=0

Hence, a(0, 1) = 0, so by (1) we have a(0, b) = a(0, 1) = 0. Thus «(0, b)
= 0 and similarly a(a, 0) = 0. (v) This follows from (1), (ii), and (iv). =

Notice that condition (2) is stronger than the condition a(a, ¢} 1 a(a’,
c¢) that one might expect. Moreover, (2) is apparently stronger than the
analogous condition for bimorphisms of orthoalgebras and effect algebras
(Dvurecenskij, 1995; Foulis and Bennett, 1993). We have three replies to
this criticism. First, one of the main motivations for studying these structures
is to describe physical systems and (2) can be justified on physical grounds.
Second, it is not hard to show that the counterpart to (2) holds in orthoalgebras
and effect algebras. Third, (2) automatically holds in many natural examples.

Example 1. Define a: [0, 1] X {0, 1] — [0, 1} by a(a, b) = ab. It is
clear that (1) and (3) hold. To prove (2), for any a, ¢, d € [0, 1] we have

ac—d)y=a(l —d)y=1-4d
Hence,
ac=l—-d+ad=1—-(1 —a)d = (a'd)

so afa, ¢) L a(a’, d). An argument similar to the proof of Lemma 3.5 shows
that o is the only effect bimorphism from [0, 1] X [0, 1] to [0, 1].

Example 2. Let P be a SOL and define a: P X P - P by a(a, b) = a
A b. Again, it is clear that (1) and (3) hold. To prove (2) we have

anc=a=dsdvd =@ rdy
Hence, a(a, ¢) L ala’, d).

Example 3. Let P = 2%, Q = 2% R = 2%%¥ be standard set-SOPs and
define a: P X Q — R by a(A, B) = A X B, where A X B is the usual set-
theoretic Cartesian product. It is clear that (1)~(3) hold.

Example 4. Let P = [0, 1]%X, Q = [0, 11", R = [0, 11¥*Y be [0, 1}-
function SOPs and define a: P X Q = Rby a(f, g) = f® g, where f ®
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g(x, y) = f(x)g(y). Then (1) and (3) clearly hold and (2) follows from
Example 1.

Example 5. As in Example 6 of Section 3, let P = (A € B(H,: 0 =
A=I),0={AeBH)0=A=I,R={AeBH QH,) 0=A<
I}, where H, ® H, is the usual tensor product and define a: P X Q — R
by a(A, B) = A ® B. It is easy to verify (1) and (3). To verify (2), let A €
Pand C, D € Q. We must show that

ARC=IQRI-(T—-AQD
This is equivalent to showing that
(Ax, xXCy, y) = [Ix[1*IlylI> = IIxlI*(Dy, y) + (Ax, xXDy, y)

for all x € H,, y € H,. By Example [, this inequality holds for all unit
vector x € Hy, y € H,. It then follows that the inequality holds for all x e
H,,y e H,.

We say that two SOPs P and Q are of the same type if P and Q are
both closed, regular, sharp, or complementing, respectively. Let P and Q be
SOPs of the same type. A tensor product of P and Q is a pair (7, T) where
T is a SOP of this type and 7: P X Q — T is a bimorphism satisfying (1) if
a: P X Q — R is a bimorphism, where R is of this type, then there exists
a morphism ¢: T — R such that « = ¢ © 7, and (2) T is generated by

(P X Q).

Lemma 8.2. If (T, 7) and (T*, 7*) are tensor products of P and Q, then
there exists a unique isomorphism ¢: T — T* such that 7% = ¢ o 7.

Proof. Since (T, 1) and (T*, 7*) are tensor products, there exist morphisms
&: T — T* such that 7% = ¢ o 7 and ¢*: T* — T such that 7 = $* o 7%,
Since T(P X Q) and (P X Q) generate T and T*, respectively, we have

T = {(a, b), 1(a, b)’, 1(a, b)": (a, b) € P X Q}
T* = {1%(a, b), T™(a, b)', 7(a, b)": (a, b) € P X Q)
Now for (a, b) € P X Q, we have
d*[d(1(a, b))] = &*[7*(a, b)] = 1(a, b)
bld*(1*(a, b))] = l(a, b)] = (a, b)
Moreover,
d*d(1(a, b))] = d*[d(T*(a, b))']
= o*[d(1(a, b)) = (a, b)Y’
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Similarly, d[d*(1(a, b)')] = 1(a, b)', db*[d(7(a, b)")] = 7(a, b)", and d[d*(1(a,
b))] = 1(a, b)". We conclude that ¢* = ¢!, so ¢ is an isomorphism.
Clearly, ¢ is unique. =

Lemma 8.2 states that if the tensor product of two SOPs exists, it is unique
to within an isomorphism. We now construct some basic tensor products. First,
consider the orthoposet S, = {0, 1}.

Lemma 8.3. The tensor product of Sy and S, is (Sy, Tp), where To(a, b)
= agb forall a, b € §,.

Proof. Tt is clear that 75 is a bimorphism. Let a: S, X S — R be a
bimorphism, where R is an orthoposet. Applying Lemma 8.1, we have

a(0,0) = a0, 1) = a(l,0) =0

and a(l, 1) = 1. Define ¢: S5 = R by $(0) = 0, $(1) = 1. Then clearly,
¢ is a morphism and a = ¢ © 7. Finally, it is trivial that S, is generated by
’T(So X So) ]

Next, consider the closed, regular SOP S, = {0, 1/2, 1}. Define the SOP
S, ®S, = (0, 1/4,1/2,3/4, 1}

where §; ® S, is considered as a sub-SOP of [0, 1]. Then S, ® §, is a closed,
regular SOP.

Theorem 8.4. The tensor product of §; and S, is (S, ® S, 7/), where
T\(a, b) = ab for all a, b € §,.

Proof. As in Example 1, 1: S, X §, = §, ® S| is a bimorphism. Since
(1/4)' = 3/4, §; ® §, is generated by 7/(§; X §;). Let a: S, X §; = R be
a bimorphism, where R is a closed, regular SOP. We then have

ad, 1) = ad’, 1) = adk, 1)
and similarly a(1, 1/2) = a(l, 1/2)’. Since R is regular, we have a(1/2, 1)
= a(l, 1/2). Define ¢: S5, ® S, = R by $(0) = (0, 0), d(1/4) = a(l1/2,
1/2), &(1/2) = a(1/2, 1), &(3/4) = a(1/2, 1/2)', &(1) = a(l, 1). Then a =
& ° 7 and & preserves '. It is clear that if a = b, then d(a) = &(b) for q,

b e {0, 1/4, 172, 1}. Also, d(0) = $(3/4) = &(1). Moreover, since 1/2 L
1/2, we have &(1/4), &(1/2) < &(3/4). Hence, ¢ is a morphism. =

We now come to the closed SOP S, = {0, 1, «, B}, where a = a', B
= B'. Define the set

Sz®Sz= [O®O} U [a®b:a,beS2,a,b

#0)U{(a®b):a,beS,ab
#+0,1)
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Forye $;,®5,define0®0=<+y=1® 1 and fora, b € {a, B} define
a@®b=aQ@1,1b=@®b).Define(0®0) =11, (1R =
0®0,and fora € {a, B) define (1 ®a) =1 Qa, @®1) =a® I.
Finally, for a, b € {a, B} define the ' of a & b as the notation indicates.

Theorem 8.5. The tensor product of S, and S; is (5, & §,, 72), where
Tx(a, 0) = 7(0,a) = 0@ 0 for all a € S, and T.(a, b) = a ® b for all q,
b #0.

Proof. It is straightforward to show that §; & S, is a closed SOP (drawing
the Hasse diagram helps) and it is clear that 7,(S; X §,) generates S, @ S,.
Since a < b implies that a & ¢ = b & ¢ for all ¢ € §,, we have T,(a, c) =
Tob, c) forallc € S,. Sincea® b L a’ & ¢ forall b, c € S, we have
Ta, b) L 75(a’, c¢) for all b, ¢ € S,. Moreover, T:(a’, 1) = 14(a, 1)’ for all
a € §,. By symmetry, we conclude that T, is a bimorphism. Let a:: §; X §;
— R be a bimorphism, where R is a closed SOP. Define ¢: §; ® S, = R by
dla ® b) = a(a, b) and d[(a ® b)'] = a(a, b)'. Then &« = ¢ ° T, and we
must show that ¢ is a morphism. If a, b # 0, 1, then

dl(a @ b)'} = ala, b) = [d(a @ b))
and
S[@a®@ D] =da@a®1) = afa, ) =ald, 1)
= [a(a, D] = [d(a @ D]
Suppose a ® b = ¢ ® d. Then a = c and b = d, so a(a, b) = alc, d).
Hence, ¢(a @ b) = d(c ® d). Finally, suppose a ® b = (¢ ® d)’. Then a
Lcorb L d soala, b) L alc, d). Hence,
Pla®b) = afa, b) = alc,d) = d[(c®d)] =
Continuing with this program, we have the sharp SOP §; = {0, 1, a,
o', a”}. Define the set
$5R85;={080}U {a®b:a,be S5 a b+#0}
Uf{a®b):a,be Sab+0,1)
U{a®b): a,be S5,a,b+F0,1}
Define 0Q0) =1®1,(1®1) =0&0, and fora € {a, o', a"} define
(1Q®a) =1Qa,@®1) =a Q1.Finally fora, b € {a, o, a"} define

the ' and the ” of a @ b as notation indicates. We next define < on S; @ §;
as follows:

(1) a@®b=c®difa=candb = d.
2) @a®b) =c®difaorb =1 and this reduces to (1).
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3) aQ@b=(@d)ifasc orb=d".
@) @b =) iIfc®@®R b=a®@b.
B @®b) =R)if(c®d) =a® b.
©6) @®h'=c®d) ifc®d=(a®b).
(7 @@bY =cQ®d)'ifa®b=cQd.
B) a®@b=(cRd)'Ifa®@®b=cRd.

The proof of the next lemma is similar to (but more involved than) the
proof of Lemma 8.5.

Lemma 8.6. The tensor product of S; and Sy is (53 ® S5, T3), where 73(a, 0)
=17,0,a) =0®O0forall a € S; and 13(a, b)) = a @ b fora, b # 0.

We also have similar definitions and results for the complementing
SOP §,.

9. TENSOR PRODUCTS OF SOPs

We now give concrete representations of the tensor products of various
types of SOPs. This is unlike the orthoalgebra or effect algebra theory,
where tensor products are constructed abstractly in terms of the set of all
bimorphisms (Dvuregenskij, 1995; Foulis and Bennett, 1993). If P C Q% is
a Q-function SOP and Q has a certain type, then it is easy to see that P has
this same type.

Theorem 9.1. If P C QX and R C QY are Q-function SOPs, where Q
= 8o, Si, 83, S5, or S, then the tensor product of P and R exists.

Proof. We denote the tensor product of Q and Q by (Q ® Q, B) and
use the notation B(a, b)) = a®@ b. Now L = (@ ® 0)**"is a Q ® Q-function
SOP of the same type as Q (and hence P and R). For f € P, g € R, define
f®ge Lby f® gl y) = flx) ® g(y) and define 1: P X R - L by
7(f, g) = f ® g. To show that T is a bimorphism, suppose f, g € P, h € R
with f < g. Then f(x) = g(x) for all X € x, so f(x) @ h(y) = gx) ® h(y)
forall x € X, y € Y. Hence,

M h=fQh=g®h=1(g, h)

IffePg heR then ix) ®g(y) L Ax) @ h(y)forallx e X,y e Y. It
follows that

1,8 =fRg L Qh=n1(f,h)

Moreover, we have

T, D= Rl =R =1 1)
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By symmetry, it follows that 7 is a bimorphism. Letting

T={fQ®g (f®g,.(fRg"fe P geR)

we conclude that T is the sub-SOP of L generated by 7(P X R).
To show that (T, 7) is the tensor product of P and R, let a: P X R —
V be a bimorphism, where V is a SOP of the same type as Q. Define &: T

- Vby d(f® g = alf, 8. d((f B 8)) = a(f, &', and ((f ® g)") =
a(f, g)". Then ¢ preserves " and o = ¢ ° 7. To show that ¢ is a morphism,
suppose f® g =< h ®i. Thenf= hand g <1, so

d(f®g) = alf. g) = ah, i) = dh @ i)
Next, suppose that f ® g < (h ® i)". Then
f0) ® g(y) = [h(x) @ i(y)]'
forevery x € X,y € Y. If g(yy) L i(yo) for some y, € Y, then

() @ g(yo) = [h(x) @ i(yo)]’
for every x € X. It follows that f L h. Hence, either f L horg L i, so

d(fR®g = alf,g) = alh, ) = $((h® ")

The other cases follow in a similar way. For example, suppose that (f & g)’
< (h @ i)’. It follows that

h(x) ® i(y) = f(x) ® g(¥)

forall x € X,y € Y.soh = fand i = g. Hence, a(h, i) = a(f, g), so
o(f, g)' = a(h, i)’. Hence,

HUB®g)=alfg) =ah ) =a(h®@D) =

Corollary 9.2. Let P C QX and R C QY be Q-function SOPs, where Q
= So, S1, 52, S5, or S,. Then the tensor product (P ® R, 7) of Pand R is a
sub-SOP of (Q @ O)**Y and 7(f, g)(x, y) = f(x) ® g(y) forallfe P, g €
R xeX yet

To be specific, we say that a SOP P has rype 0, 1, 2, 3, or 4 if P is: an
orthoposet; closed and regular; closed, sharp, and unit; or complementing,
respectively.

Corollary 9.3. Let P and R be SOPs of type ¢, ¢t = 0, 1, 2, 3, 4. Then
the tensor product (P ® R, 1) of P and R is an S, ® §,-function SOP. Moreover,
if w and v are S-morphisms on P and R, respectively, then there exists a
unique S, @ S,-morphism X on P ® R such that \[1(a, b)] = p(a) & v(b)
foralla e P b € R.
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Proof. Let Mp and My be the set of all S,-morphisms on P and R,
respectively. From previous results, we have seen that there exist isomor-
phisms u, v from P, R to S,-function SOPs Fp C SMP, Fr C S¥R, respectively.
Let (Fp & Fy 7)) be the tensor product of Fp and Fy in accordance with
Corollary 9.2. Define : P X R = Fp & Fy by

1(a, b) = 7,(u(a), v(b)) = u(a) & v(b)

We easily conclude that T is a bimorphism and 7(P X R) generates Fp &
Fg. Let a: P X R — L be a bimorphism, where L has type r. It follows that
oy Fp X Fp — L given by o, (u(a), v(b)) = a(a, b) is a bimorphism. Hence,
there exists a morphism ¢: Fp & Fg — L such that &y = ¢ ° 7. Now

(b ° 1)a, b) = dbl1(u(a), v(b))] = a;(u(a), v(b)) = a(a, b)

Hence, a = & ° 71, s0 (Fp @ Fpg, T) is the tensor product of P and R. Finally,
let p and v be S,-morphisms on P and R, respectively. Define \: Fp @ Fy
- S5 ®S, by M\(f® g) = f(r) @ g(v). It is clear that A is an S, @ §-
morphism and we have

M(a, b)] = Mu(a) ® v(b)] = u(a)() & v(b)(v)
wa) @ v(b)
Finally, A is clearly unique. =

Corollary 9.4. Let P and R be orthoposets. Then the tensor product (P
& R, 1) of P and R is a standard set-SOP of subsets of a Cartesian product
X X Y and 1(a, b) = A X B, where A C X, B C Y. Moreover, if i and v
are Sp-morphisms on P and Q, respectively, then there exists a unique A €
X X Y such that p(a)v(b) = xsxp(A) foralla e P, b € R.

Corollary 9.5. Let P and R be closed, regular SOPs. Then the tensor
product (P ® R, 1) of P and R is a [0, 1]-function SOP of functions on a
Cartesian product X X Y and 1(a, b)(x, y) = f(x)g(y), where f € [0, 1]1%, g
e [0, 11" Moreover, if w and v are [0, 1]-morphisms on P and Q, respectively,
then there exists a unique (x, y) € X X Y such that p(a)v(b) = (a, b)(x, y)
foralla e P b € R.
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