
International JoulTzal of  Theoretical Physics, Vol. 35, No. 6, 1996 

Semi-Orthoposets 

Stanley Gudder  j 

Received September 26. 1995 

A semi-orthoposet (SOP) is a bounded poset P together with a unary operation 
': P --~ P such that a -< b implies b' -< a' and a <- a" for all a ~ P. This structure 
generalizes all previously studied quantum logic frameworks and yet is rich 
enough so that nontrivial results can be proved. For various types of SOPs it is 
shown that a partially defined morphism has an extension to the full SOP and 
that there exists an order-determining set of morphisms with a specified range. 
These results are applied to obtain representations of SOPs in terms of SOPs of 
sets and SOPs of functions. Connections between SOPs and effect algebras as 
well as tensor products of SOPs are obtained. 

1. I N T R O D U C T I O N  

Various ordered structures have been considered in the quantum logic 
approach to the foundations of  quantum physics. Sixty years ago, Birkhoff 
and von Neumann (1936) originated the quantum logic approach by proposing 
the f ramework of a modular, complemented lattice. This framework was later 
generalized to orthomodular lattices and posets (Beltrametti and Cassinelli, 
1981; Gudder, 1979, 1988; Jauch, 1968; Mackey, 1963; Piron, 1976; Ptak and 
PulmannovL 1991; Varadarajan, 1968/1970). Unfortunately, the categories of  
orthomodular lattices and posets do not admit tensor products, which are 
important for the study of  composite physical systems (Foulis and Randall, 
1981; Kl~iy et  al. ,  1987; Randall and Foulis, 1981). For this and other reasons, 
a more general category has been recently introduced, that of  orthoalgebras 
(Foulis and Bennett, 1993; Foulis et  al . ,  1992; Gudder, 1988). But orthoalge- 
bras were still not general enough to include the study of  unsharp measure- 
ments and propositions. This latter study is usually called the operational or 
convexity approach (Ludwig, 1986; Prugove~:ki, 1986; Schroeck and Foulis, 
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1990). The latest framework that has been proposed is the category of  effect 
algebras or difference posets (Dvure~enskij, 1995, n.d.; Dvure~enskij and 
Rie~an, 1994; Foulis and Bennett, 1994, n.d.; Giuntini and Greuling, 1989; 
K6pka and Chovanec, 1994). This framework includes all the previous ones 
and still admits tensor products. Other frameworks have been developed to 
study unsharp measurements. These include paraconsistent quantum logic, 
Brouwer-Zadeh posets, and three-valued Lukasiewicz posets (Cattaneo and 
Nistico, 1989; Dalla Chiara and Giuntini, 1989; Giuntini, 1990; Giuntini and 
Greuling, 1989). 

In this article, we attempt to set an upper bound for this proliferating 
sequence of generalizing frameworks. The structure that we shall study is 
called a semi-orthoposet (SOP). This structure generalizes all the previously 
mentioned ones, and yet is rich enough so that nontrivial results can be 
proved. Besides this, it can be employed to generate orthoalgebras and effect 
algebras in a canonical fashion. 

The article begins with basic definitions and results. It then illustrates 
various types of SOPs with examples. Our main concern is that of SOP 
morphisms, and these are studied next. The two main problems investigated 
are whether a partially defined morphism has an extension to the full SOP 
and whether there exists an order-determining set of morphisms with a speci- 
fied range. We are able to solve both of  these problems for various types of  
SOPs, but slightly different proofs must be used for each type. We then apply 
these results to obtain representation theorems for certain types of SOPs in 
terms of SOPs of  sets and SOPs of  functions. Furthermore, these results are 
employed to obtain tensor products for various types of  SOPs. Finally, we 
give connections between SOPs and effect algebras. 

One of  the advantages of  studying SOPs is that they unify the various 
stronger structures and give a deeper understanding of  their properties. This 
is because we can define certain local properties that hold globally in the 
stronger structures. 

2. BASIC D E F I N I T I O N S  AND RESULTS 

A semi-orthoposet (SOP) is a bounded poset (P, 0, 1, -<) with a map ': 
P ~ P such that (1) a -< b implies b' <- a '  and (2) a <- a" for all a • P. 
A unit SOP is a SOP in which 1' = 0. An element a • P is complementing 
if a A a'  = 0, sharp if a v a '  = 1, and closed if a = a". If a <- b', we write 
a _L b. Notice that if a -< b',  then b <- b" -< a ' ,  so .L is a symmetric relation. 
An element a E P is isotropic if a J_ a, strongly isotropic if a = a ' ,  and 
orthoisotropic i fa  _L a and whenever b J_ b, then a _L b. Also, a is nonisotropic 
i f a  Z a .  
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The fol lowing lemmas contain useful basic results. The  p roof  o f  each 
result is e lementary but is included for completeness.  

Lemma 2.1. A SOP P has the fol lowing properties. (i) a "  = a '  for all 
a E P. (ii) 0 '  = 1. (iii) I f  va,~ exists, then ha "  exists and (Mac,)' = h a ' .  (iv) 
If  ha,~ and v a "  exist, then va~, <-- (^a,~)'. (v) I f  P is a unit SOP and if a is 
sharp, then a is complement ing .  (vi) t is sharp and closed and 0 is sharp 
and complement ing .  (vii) The fol lowing are equivalent:  P is a unit SOP, 0 
is closed, 1 is complement ing.  (viii) If  a is sharp, then a '  is sharp. If  a '  is 
complement ing ,  then a is complement ing .  (ix) An element a is closed if and 
only if a = b '  for some b E P. (x) For a ~ P, a" is the smallest closed upper 
bound o f  a. (xi) If  a is closed, then a is strongly isotropic if and only if a 
and a '  are isotropic. (xii) I f  a is isotropic and b -< a, then b is isotropic. 
(xiii) I f  a v~ 0 is complement ing ,  then a is nonisotropic.  (xiv) If  a,~ are closed 
and ^a,~ exists, then ha,~ is closed. 

- -  " a "  ~ a ' .  a '  - -  ( a ' ) "  a" Proof (i) Since a < a , Also, < = . (ii) Since 0 
<-- 1', 1 -< 1" -< 0 ' .  Hence, 1 = 1" = 0 ' .  (iii) Suppose va,, exists. Then a~ 

t t <-- Mac, for  all e~, so (va~) '  <-- am for all oL. Suppose b ~ am for all oL, Then 
a,~ --< a,~" --  < b '  for all ~,  so va,~ <-- b ' .  Hence,  b - < b" -< (va,~)', so (va, ,) '  = 
^ a ' .  (iv) Since ^a,, <-- a,, for all ~, a"  <- (^a~) '  for all a .  Hence, va~, --< 
(^a ,0 ' .  (v) Suppose P is a unit SOP and a is sharp. Then a v a '  = 1 and 
by (iii), a '  ^ a" = 1' = 0. If  b ~ a, a ' ,  then b --< a", a ' ,  so b <- a" ^ a '  = 
0. Hence,  b = 0, so a h a '  = 0 and a is complement ing.  (vi) We have shown 
in (ii) that l is closed. Since 1' <-- 1, 1 v 1' = 1, so 1 is sharp. Since 0 --< 
0 ' ,  0 h 0 '  = 0, SO 0 is complement ing.  Since 0 v 0 '  = 0 h 1 = 1, 0 is sharp. 
(vii) I f  P is a unit SOP, then 0 = 1' = I "  = 0", so 0 is closed. If  0 is closed, 
then 1' = 0" = 0, so 1 h I '  = 1 h 0 = 0 and 1 is complement ing.  If  1 is 
complement ing,  then 1' = 1 ^ 1' = 0, so P is a unit SOP. (viii) I f  a is sharp, 

" ' = 1, s o  b = t h e n a v a '  = 1. If  b - >  a ' , a , t h e n b - >  a , a ,  s o b  ~ a v a '  
1. Hence,  a '  v a" = 1 and a '  is sharp. If  a '  is complement ing ,  then a '  h a" 

• t n t - -  a r  d ~  a ~ = 0 .  I f b - < a , a , t h e n b - < a , a , s o b  < h = 0. Hence,  a h  = 0 
and a is complement ing.  (ix) If  a is closed, then a = ( a ' ) ' .  I f  a = b '  for 
some b ~ P, then a" = b"  = b '  = a, so a is closed. (x) Clearly, a" is a 
closed upper bound for a. I f  a ~ b where b is closed, then a" -< b" = b. (xi) 
Notice that a is strongly isotropic if and only if a -< a '  and a '  ~ a = a". 
But this is equivalent to a and a '  being isotropic. (xii) If  a is isotropic and 
b --< a, then b < a < a '  --< b ' ,  so b is isotropic. (xiii) Suppose a 4~ 0 is 
isotropic. Then a ^ a '  = a :~ 0, so a is not complement ing.  (xiv) Suppose 

t t  

a~ are closed and ha~ exists. Then ^a~ ~ a,~ for all ~, so ( h a j '  ~ a~ = a~ 
for all a .  Hence, (ha~)" <-- ha,~. It follows that ha~ = (^a~)", sO ^a~ is 

closed. • 
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There  are examples  that show that the full De M o r g a n ' s  law o f  (iv) does 
not hold. The  converses  o f  (v) and (xiii) do not hold. Part  (xiv) does not 
hold if ^ is replaced by v .  

The previous  defini t ions give local propert ies  o f  individual  elements .  
We now give some  global  definit ions.  A SOP that is a lattice is cal led a 
SOL. A SOP P is complementing, sharp, or closed if every  a E P is comple -  
menting,  sharp, or closed,  respectively.  A SOP P is nonisotropic if  every 0 

a E P is nonisotropic  and P is regular if  every  isotropic a ~ P is 
orthoisotropic.  It is easy  to show that a c losed or c o m p l e m e n t i n g  SOP is a 
unit SOP. A closed,  sharp S O P  is cal led an orthoposet. 

Lemma 2.2. (i) The  fol lowing s ta tements  are equivalent:  P is closed,  
' is injective, ' is surject ive.  (ii) I f  P is c losed and ^a~, exists,  then v a "  exists  
and ( ^a ,0 '  = va~.  (iii) I f  P is closed,  then a ~ P is sharp if and only if a 
is complement ing .  (iv) A S O P  P is nonisotropic  if  and only if P is 
complement ing .  

Proof. (i) App ly ing  L e m m a  2.1(ix), P is c losed if and only if ' is 
surjective. If  P is c losed and a '  = b ' ,  then a = a" = b" = b, so ' is injective. 
I f  ' is injective, then a '  = (a") '  implies  that a = a", so P is closed. (ii) 
Suppose  P is c losed and ^a,~ exists. Then ^ a ,  -< a~, for  all or, so a"  --< (Aa~,)' 

¢ I t  for all a .  Suppose  a,~ <- b for all a .  Then b' <-- a,  = a~ for  all or, so b' <-- 
Aa~,. Hence,  (^a~,)' --< b" = b, so (Aa,0 '  = v a ' .  (iii) I f  P is closed,  then P 
is a unit SOP. App ly ing  L e m m a  2. l (v) ,  i f a  is sharp, then a is complement ing .  
Conversely ,  if  a is complemen t ing ,  then a ^ a '  = 0. Apply ing  (ii) g ives  

1 = 0 '  = ( a h a ' ) '  = a ' v a "  = a ' v a  

so a is sharp. (iv) Suppose  P is complemen t ing  and a 2. a.  Then  a --< a ' ,  so 
a = a A a '  = 0. Hence,  P is nonisotropic.  Converse ly ,  suppose  P is noniso-  
tropic. Let  a E P and suppose  b --< a, a ' .  Then b -< a -< a" -< b ' ,  so b is 
isotropic. Hence,  b = 0, so a A a '  = 0 and P is complement ing .  • 

One of  the reasons for  the te rminology  "a  is sharp"  is that a v a '  = l 
is equivalent  to the law of  the excluded middle.  We now give a counte rexample  
that illustrates var ious results that do not hold. Let  P = {0, l, a,  b, c, a ' ,  b ' ,  
c ' } ,  where a" = a, b" = b, c" = c, l '  = 0, c < a, b, c ' ,  and a ' ,  b '  < c ' .  It 
is easy  to show that P is a c losed SOP. Al though a and b are complement ing ,  
sharp, and nonisotropic ,  c = a A b is not complement ing ,  sharp, or  noniso-  
tropic. Similarly,  a '  and b '  are complemen t ing  and sharp,  but c '  = a '  v b '  
is not complemen t ing  or sharp. Not ice  that it fo l lows f rom L e m m a  2.1(xii) 
that if  a is a nonisotropic  e lement  o f  an arbitrary SOP and if a v b exists,  
then a v b is nonisotropic .  

If  P and Q are SOPs,  a morphism d~: P --4 Q satisfies the following: 
&(0) = 0, a -< b implies  qb(a) -< ~b(b), and ~b(a') = qb(a)' for all a ~ P. We 
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somet imes  call ~b a Q-morphism on P. If, in addition, ~b is bi ject ive and + (a )  
<- + (b )  implies  a <- b, then ~b is an isomorphism. A set o f  Q - m o r p h i s m s  M 
on P is order determining if  m(a) <- m(b) for  all m E M implies  a --< b. A 
sub-SOP P3 of  a S O P  P is a subset  o f  P such that 0, 1 E PI,  and if a ~ PI ,  
then a '  E PI.  Not ice  that a sub-SOP is i tself  a S O E  A partial Q-morphism 
on P is a Q - m o r p h i s m  defined on a sub-SOP o f  P. 

An effect algebra is a sys tem (P, 0, 1, • )  where  ~ is a partial binary 
operat ion on P satisfying: 

(1) I f  a G b is defined, then b G a is def ined and b G a = a G b. 
(2) I f  a • b and (a G b) • c are defined,  then b • c and a • (b G 

c) are def ined and a • (b @ c) = (a • b) G c. 
(3) For  every  a ~ P there exists  a unique a '  E P such that a • a '  = 1. 
(4) I f  a • 1 is defined,  then a = 0. 

For  an effect  a lgebra  P, we write a J_ b if a • b is defined. Moreover ,  
we write a -< b if there exists a c ~ P such that c 2- a and b = a • c. I f  
P and Q are effect  algebras,  an effect morphism is a map  ~b: P --> Q such 
that ~b(1) = 1 and a 2- b implies  d/,(a) J_ +(b)  and qb(a • b) = qb(a) • ~b(b). 
An orthoalgebra is an effect  a lgebra  in which a 2_ a implies  a = 0. The  
next  l e m m a  shows that the notation a 2_ b is consis tent  with our  previous  
usage and that a c losed SOP is a general izat ion o f  an effect  algebra.  This  
result  can be found in Foulis  and Bennet t  (1993, 1994). 

Lemma 2.3. (i) I f  (P, 0, 1, @) is an effect  algebra,  then a 2_ b if and 
_ ' )  only if a <- b' and (P, 0, 1, < ,  is a closed SOP. (ii) I f  (P, 0, 1, E3) is an 

or thoalgebra,  then (P, 0, 1, <-, ' )  is an or thoposet .  

Proof (i) I f  a _L b, then b q9 a is defined. Now (b G a) • (b G a)' = 
1, s o b  • [a • (b G a)'] = 1. Hence,  a • ( b O  a ) '  = b ' ,  so a -< b ' .  
Converse ly ,  if  a <- b ' ,  then there exists  a c ~ P such that a _L c and a G c 
= b ' .  Since b 2_ b ' ,  we  conclude that b G (a G c) is defined. Hence,  b • 
a is def ined so a 2- b. To show that (P, 0, 1, --<, ' )  is a c losed SOP, since a 
• a '  = 1, we conclude  that a --< 1 for  all a E P. Since 1' • 1 is defined,  
1' = 0. Since a '  • a = 1, we have a = a". It fol lows that 

( 0 0 a )  O a '  = O G ( a O a ' )  = OG 1 = 1 

s o 0 O a  = a" = a. Hence,  0 - < a a n d a - - < a f o r a l l a  ~ P. S u p p o s e a < -  
b a n d b - < a .  Then  there exist  c, d ~ P s u c h t h a t b  = a O c a n d a  = b G  
d. Hence,  

b = ( b G d )  O c  = b G ( d O c )  

We conclude that 

1 = b ' O b  = b ' G [ b O ( d O c ) ]  = ( b ' G b )  O ( d G c )  = 1 G ( d ~ c )  
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so d • c = 0. Hence, 

d' = d ' G O = d ' O ( d O c ) = ( d ' O d ) O c =  I O c  

so c = 0. It follows that b = a. Suppose that a < b and b < c. Then there 
exist d, e s P such that b = a • d and c = b • e. Hence, 

c = ( a G d )  O e = a O ( d O e )  

so a -< c. Finally, i f a  -< b, then there exists c ~ P such that b = a • c. Hence, 

1 = b G b '  = ( a G c )  O b '  = a e ( c O b ' )  

We conclude that a '  = c • b ' ,  so b '  < a ' .  (ii) If  a is isotropic, then a _L a, 
so a = 0. It follows that P is nonisotropic, so by Lemma  2.2(iv), P is 
complementing. By Lemma  2.2(iii), P is sharp, so P is an orthoposet. • 

Of  course, an effect morphism qb: P ---> Q is a SOP morphism when P 
and Q are considered as SOPs. 

3. E X A M P L E S  

This section illustrates the generality and unifying power of  SOPs by 
exhibiting a large number of  examples.  

Example 1. Let X be 
on X. For A ~ 2 x, define 

A, = 

a nonempty set and let r be a symmetric relation 

{y ~ X: y r x  for all x e A} (3.1) 

Then P = (2 x, 0 ,  X, C,  ') is a SOL. Simple examples show that P need 
not be a unit SOL and P need not be complementing,  sharp, or closed. If  r 
is also irreflexive, then P is a complementing SOL that need not be sharp 
or closed. Conversely, if P is complementing,  then r is irreflexive. Indeed, 
in this case {x} n {x}' = 0 ,  so x is not related to x for all x ~ X. If  P0 = 
{A c P: A = A"}, then it is easy to show that P0 is a complete ortholattice. 
A set-SOP is a SOP of the form (P, 0 ,  X, C_, ') where P C_ 2 x. [In this 
definition ' is general and need not have the form (3.1).] 

Lemma 3.1. (2 x, 0 ,  X, C,  ') is a set-SOL if and only if there is a 
symmetric relation r on X such that A' has the form (3.1) for all A E 2 x. 

Proof  We have already noted sufficiency. For necessity, suppose (2 x, 
O , X ,  C, ' ) i s  a set-SOL. D e f i n e y r x i f y  E {x}'. I f y r x ,  then {y} C {x}', 
so {x} C {x}" C {y}'.  Hence, x r y ,  so r is a symmetric relation. For A 
2 x, since A = n x o  {x}, by De Morgan's  law we have 

A' = n {x}' = {y E X : y r x f o r a l l x  E A }  • 
r¢ ~A 
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A set-SOP (P, O, X, C,  ') is generated by a symmetric relation r if A' 
has the form (3.1) for all A e P. By Lemma 3.1, (2 x, O,  X, C, ') is always 
generated by a symmetric relation. 

Lemma 3.2. A set-SOP (P, 0 ,  X, C, ') is generated by a symmetric 
relation if and only if for every A e P we have 

N u {B': x • B • P} C_ A' 
x ~ 

Proof Suppose (P, 0 ,  X, C_, ') is generated by a symmetric relation r 
onX.  I f B  e P , y  • B ' , a n d x  • B, t h e n y r x .  Hence i f  

Y • n u {B ' :x  • B • P} 
x ~ t  

then y r x for all x • A, so y • A'. Conversely, let (P, Q, X, C_C, ') be a set- 
SOP satisfying the given condition. Define x r y if there exists a B • P such 
tha tx  • B a n d y  • B'. I f x r y ,  t h e n y  • B' a n d x  • B C ( B ' ) ' , s o y r x .  
Hence, r is a symmetric relation on X. If y r x for every x e A, then by the 
condition, y • A'. I f y  • A', then for every x • A we have y rx,  so A' has 
the form (3.1). • 

The next lemma shows that any SOP can be represented as a set-SOP. 

Lemma 3.3. Any SOP Q is isomorphic to a set-SOP. 

Proof For a • Q, define (0, a] C Q by 

(0, a] = {b • Q : 0 < b < - a }  

Let X = (0, 1], P = {(0, a]: a • Q} and define (0, a]'  = (0, a '] .  Then P 
C 2 x and we now show that (P, O, X, C, ') is a set-SOP. Since (0, 0] = 0 ,  
we have 0 • P and it is clear that (0, a] C (0, b] if and only if a --< b. 
Hence, if (0, a] C_C_ (0, b], then b' --< a ' ,  so 

(0, b]' = (0, b'] C [0, a'] = (0, a]'  

Moreover, since a <- a", we have 

(0, a] C_ (0, a"] = (0, a]" 

Define qb: Q ---) P by +(a) = (0, a]. It is clear that qb is an isomorphism. • 

Example 2. Let Lo(X) be the lattice of open subsets of a topological 
space X. For A • Lo(X), define A' = int(A"). Then (Lo(X), 0 ,  X, C, ') is a 
complementing set-SOL that is not sharp and not closed in general. It is easy 
to show that A • L0(X) is sharp if and only if A is ciopen. Moreover, if A 
is sharp, then A is closed (A = A"). The next lemma shows that, in general, 
this set-SOL is not generated by a symmetric relation on X. 
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Lemma 3.4. If  X is a Hausdorff  space that contains an open set A that 
is not topologically closed, then (L0(X), Q,  X, C,  ')  is not generated by a 
symmetric relation on X. 

Proof  If  x, y ~ X with x ~ y, then there exist disjoint open sets U and 
V such that x E U, y ~ V. Hence, y ~ U' and 

{x} c = U{B' :  x ~ B E Lo(X)} 

It follows that 

,) A " =  Ix = n Ix} " =  n u {B': x e B e Lo(X)} 
• x E.4 x ~-~ 

But A c ~ A'  since A is not topologically closed. Applying Lemma  3.2 gives 
the result. • 

Example 3. Let V be a real or complex inner product space with inner 
product (x, y) and let L(V) be the lattice of  all subspaces of  V. Define the 
symmetric relation x t y on V by (x, y) = 0 and for A ~ L(V) define 

A' = { y ~ V: y ± x for a l l x  E A} 

Then (L(V), {0}, V, C,  ')  is a complementing SOL that is not sharp and not 
closed, in general. It is easy to show that A ~ L(V) is sharp if and only if 
A + A'  = V and that the set o f  sharp subspaces forms an orthoposet. 

Example 4. Let S = [0, 1] C R with the usual order -<. For a E S, 
define a '  = 1 - a. Then S is a closed SOL that is not complementing (and 
hence, not sharp). In fact, the only complementing (sharp) elements of  S are 
0 and 1. Moreover, an element of  S is nonisotropic if and only if it is greater 
than 1/2. Hence, although S is not nonisotropic, it is regular. I f  P is an 
arbitrary unit SOP, then there exists at least one S-morphism on P. Indeed, 
define qb: P ---) S by qb(0) = 0, qb(l) = 1, and d~(a) = 1/2 for a 4: 0, 1. We 
can make S into an effect algebra with the same order and ' as follows. For 
a, b ~ S, we say that a G b exists if a + b --< 1 and we then define a • b 
= a + b. The next lemma, which is a special case of  a theorem proved in 
Foulis and Bennett (n.d.), shows that there is only one effect morphism from 
S t o S .  

Lemma 3.5. A map d~: S ~ S is an effect morphism if and only if d~(a) 
= a f o r a l l a  E S. 

Proof  It is clear that +(a)  = a is an effect morphism. Conversely, 
suppose qb: S ---> S is an effect morphism. For n ~ N, since 

1 • " "  • 1 = 1 (n summands) 
n n 
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we have n~(1/n) = 1, so ~b(1/n) = l/n. I f  m/n ~ S is rational, then 

_1 G -- -  G 1 _ m (m summands )  
n n n 

Hence,  d~(m/n) = mc~(l/n) = m/n. Let a ~ S be irrational. I f r  E S is rational 
and a < r, then d~(a) --< ¢b(r). Hence  

~b(a) <-- inf{c~(r): r rational, a < r} 

= inf{r: r rational, a < r} = a 

Similarly, 

qb(a) -> sup{r: r rational, r < a} = a 

Hence,  d~(a) = a. • 

I f  P is an arbitrary effect  algebra,  an effect  morph i sm d~: P --~ [0, 1 ] is 
called a state. We conclude that S = [0, 1] has only one state. O f  course,  
this single state is order determining for S. I f  P and Q are effect  algebras,  
we define their horizontal sum P • Q to be the disjoint union of  P and Q 
with their O's identified and their l ' s  identified. For  a, b ~ P • Q we say 
that a G b is def ined if both a, b are in P and a Oj, b is defined or both a,  
b are in Q and a OQ b is defined. In the first case we define a • b = a Gj,  
b and in the second a G b = a ~ a  b. It is easy to check that P • Q is an 
effect  algebra.  By L e m m a  3.5, S • S again has only one state d~(a) = a. 
But ~b is no longer order  determining,  since ~ (a )  = ~b(b) if a is in the first 
S and b is in the second S with a = b as e lements  of  S. 

Example 5. Let  X be a nonempty  set and let P = [0, 1] x. For f ,  g ~ P, 
d e f i n e f  <-- g i f f ( x )  --< g(x) for all x ~ X and d e f i n e f '  = 1 - f. Then (P, 0, 
1, --<, ' )  is a closed, regular  SOL that is not complemen t ing  (or sharp) 
in general.  

Lemma 3.6. (i) A function f ~ P is sharp if and only i f f  2 = f.  (ii) I f  
X is a topological  space and P0 is the sub-SOP o f  P consist ing of  cont inuous 
functions,  then f ~ P0 is sharp if and only i f f  is the characteristic function 
of  a c lopen set. In particular,  if X is connected,  then the only sharp e lements  
of  P0 are 0 and 1. 

Proof. (i) It is easy to check that f ^  g = min(f ,  g) a n d f v  g = max(f ,  g). 
Hence,  the fo l lowing are equivalent:  f i s  sharp, max(f (x) ,  1 - f ( x ) )  = 1 for  
all x e X, for  all x ~ X we h a v e f ( x )  = 1 o r f ( x )  = 0, f ~ = f .  ( i i )Clear ly ,  
characterist ic functions o f  c lopen sets s a t i s f y f  2 = f,  so by (i), such functions 
are sharp. Converse ly ,  i f f  E P0 is sharp, then by ( i ) , f i s  the characterist ic 
function of  a set A C X. Since A = f - ' ( {  1 }) and A c = f -  ~({0 }), both A and 
A c are closed. Hence,  A is clopen. • 
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We can make  P into an effect  a lgebra  with the s ame  order  and ' as 
follows. For  f,  g e P we say t h a t f •  g is def ined i f f ( x )  + g(x) -< 1 for  all 
x e X and we then define f • g = f + g. For  x • X, define the effect  
morph i sm Cx: P ---) [0, I] by ck,-(f) = f(x).  Then  {6,:  x E X} is an order-  
de termining set o f  states on P. I f  P and [0, 1] are cons idered  as SOPs,  then 
{Qx: x • X} is an order-determining set o f  [0, l ] - m o r p h i s m s  on P. 

Example 6. Let B(H) be the set o f  bounded self-adjoint  opera tors  on a 
complex  Hilbert  space H. For A, B e B(H), we define A <-- B if (Ax, x) <-- 
(Bx, x) for all x • H and we define A'  = I - A. I f  we let 

P =  {A e B ( / - / ) : 0 - < A  ~ I} 

then (P, 0, I, --<, ')  is a closed,  regular  SOP that is not comp lemen t ing  
(or sharp). For example ,  A = //2 is s t rongly isotropic and hence A is not 
complemen t ing  or sharp. The  next result character izes  the sharp (and comple -  
ment ing)  e lements  of  P. Recall  that A • P is a projection i f  A ~ = A. 

Theorem 3.Z An e lement  A • P is sharp if and only i fA  is a projection.  

Proof Suppose  A is a project ion and B • P satisfies A <- B, A'  -< B. 
Then  for every  x • AH we have  

(x, x) = (Ax, x) <-- (Bx, x) < (x, x) 

Hence,  (Bx, x) = Ilxll 2 for every  x e AH and similar ly (By, y) = liyll 2 for  
every  y • A'H. Since A is a projection,  if u • H, then there exist  x • AH, 
y • A ' H  such that u = x + y. Since x l ~; we have  II u It 2 = II xl l  2 q,_ IlYIt 2 Hence,  

(Bu, u) = (Bx + By, x + y) 

= (Bx, x) + (By, y) + (Bx, y) + <By, x) 

= Ilxll z + Ilyll z + (Bx, y) + (By, x) 

= l i t &  + (Bx, y) + (By, x) 

Since (Bu, u) < Ilull ~-, we conclude that 

(Bx, y) + (By, x) <-- 0 

Lett ing v = x - y we have 

<By,  v> = 11vll 2 - (Bx, y) - (By, x) 

Again,  since (By, v) <-- Ilvll 2, we conclude 

(Bx, y) + (By, x) = 0 

Hence,  (Bu, u) = llutl 2 and it fo l lows that B = L It fol lows that A v A' = 
I, so A is sharp. 
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Converse ly ,  suppose  A • P is not a projection.  By the spectral theorem,  
we have 

i0 fl A = /tpA(d/t), A' = (1 - /t)pA(d/t) 

Let f :  [0, 1] ~ [0, 1] be the cont inuous function def ined b y f ( / t )  = max(/t ,  
1 - /t). Def ine  B • P by 

fo B = f( / t )PA(d/ t)  

It fol lows that A <-- B and A'  -< B. Since A is not a projection,  its spec t rum 
~(A) ~ {0, 1}. Hence,  there exists a /to • e (A)  with 0 < /to < 1. Then  
PA(A) ¢ 0 for any ne ighborhood A of / to .  Let  A = (a, b), where 0 < a < 
/t0 < b < 1. Let  x • H satisfy x ¢ 0, pA(A)x  = x, and hence pA(AC)x = 
0. Then  

(Bx, x) = f(/t){pA(dhh)x, x) = f( / t)(PA(d/t)x,  x) 

~ m a x f ( / t ) l l x l l  2 < Ilxll 2 

It fol lows that B 4: L Hence,  A v A'  =~ I and A is not sharp. • 

For  a different and independent  p roo f  o f  T h e o r e m  3.7, we refer  the 
reader to Dvure~enski j  (n.d.). 

We can m a k e  P into an effect  a lgebra  with the same order  and ' as 
follows. For A, B • P we say that A • B is def ined i f A  + B • P and we 
then define A • B = A + B. For x • H with Ilxll = 1, define the state dp:, 
on P by ~bx(A) = (Ax, x). Then {d;,.~: x • H} is an order-determining set o f  
states on P. However ,  as in Example  4, it is easy to show that P • P does 
not have an order-determining set o f  states. 

Example 7. Let P = {A • B(H): 0 <-- A <-- I} as in Example  6. For A 
• P, let ker(A) = {x • H: Ax = 0} and let Eker(A) be the projection onto 
ker(A). Def ine  the unary operat ion ~'  P ---> P by A -  = Eker~a). Then (P, 0, I, 
<--, - )  is a c o m p l e m e n t i n g  SOP. Indeed, suppose  A < B. I f  x • ker(B), then 
(Ax, x) <-- (Bx, x) = 0. Since A ----- 0, there exists  a unique C --- 0 such that 
A = C 2. Hence ,  

I lCxtl  z = (Cx, Cx) = (C2x, x) = {Ax, x) = 0 

so Cx = 0 and then A x  = C2x = 0. Therefore ,  x • ker(A), so ker(B) C 
ker(A). It fo l lows that B~ --< A- .  To show that A --< A ~ - ,  we have 

I 

A - -  = E~aA) = Eker~A) = A ' -  
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Hence, for all x • H we have 

(Ax, x> = (A(A-~ + A-)x, (A- -  + A-)x) 

= (AA--x,  A - - x  + A-x) 

= (AA--x,  A--x}  + (A--x,  AA-x> 

= (AA--x,  A - -x )  <-- (A--x,  A - - x )  

= (A--x,  x> 

To show that A ^ A-  = 0, suppose B -< A, A-.  Then 

B < _ _ B - - < _ A - ~ = A  -, 

Since A-  is a projection, applying Theorem 3.7 gives B <-- A-  ^ A~' = 0. 
Hence, B = 0, s o A ^ A -  = 0. 

A similar structure can be obtained from Example 5. Let P = [0, 1] x 
and for f • P, let f -  = Xk~,f~, where × denotes the characteristic function. 
As in the previous paragraph, (P, 0, t, --<, - )  is a complementing SOP. Except 
in trivial cases, neither this SOP nor the SOP of the previous paragraph is 
closed. We also have the identity f - -  = f ~ '  as before. 

In general, (P, 0, 1, -<, ', - )  is called a BZ-poset if (P, 0, 1, -<, ') is a 
closed, regular SOP, (P, 0, 1, -<, - )  is a complementing SOP, and a - -  = 
a~'  for all a • P. For any BZ-poset, we have a~ <- a ' .  Indeed, since a -< 
a ~  = a - ' ,  we have a~ = a-" <-- a'. Investigations of BZ-posets can be 
found in Cattaneo and Nistico (1989), Dalla Chiara and Giuntini (1989), 
Giuntini (1990), and Giuntini and Greuling (1989). 

4. EXTENSIONS OF PARTIAL MORPHISMS 

Let P and Q be SOPs. A partial Q-morphism d~ on P is maximal if there 
are no partial Q-morphisms on P that properly extend dp. 

Lemma 4.1. If P is a SOP, then any partial Q-morphism on P has a 
maximal extension. 

Proof Let Po be a sub-SOP of  P and let ~bo be a partial Q-morphism 
with domain P0- Let At be the set of all partial Q-morphism extensions of  
~b 0. Partially order At by ~bl --< ~b2 if 4, 2 is an extension of qb I. Let C = {~b~: 
c~ e A} be a chain in At. Denote the domain of  qb,~ by D(~b~) and let D = 
U{D(~b~,): c~ e A}. Define ~: D --> Q as follows. I f a  e D, then a e D(~b~) 
for some c~ e A and we define qb(a) = ~b~(a). We first show that qb is well 
defined. Suppose a e D(qb~) fq D(dpl3). Without loss of  generality, we can 
assume that ~b~ <-- 4,t3. Hence, qb,~(a) = ~bl3(a) and ~ is well defined. Next, 
D is a sub-SOP of P since 0, 1 e D and if a • D, then a • D(qb~) for some 
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c~ • A, so a '  • D(~b,~) C_ D. It is also clear that + is an extension of  qb,~ for 
all ~x • A. To show that + is a partial Q-morphism on P, let a e D. Then 
a • D(qb,~) for  some ~ e A, so a '  • D(+~) and 

+ ( a ' )  = + ~ ( a ' )  = +,~(a) '  = + ( a ) '  

Suppose a, b • D with a --< b. Then  a • D(~b,~) and b • D(+~) for some 
e~, [3 • A. Without  loss o f  generality, assume that +9 --- +,~- Then a, b • 
D(+,~) and 

qb(a) = O,~(a) -- ~b,~([3) = ~b(b) 

Clearly, +(0)  = 0. Hence,  + • ~ and + is an upper bound for C. By Zorn 's  
lemma, At has a maximal  element,  m 

The  next  result shows that any SOP has an abundance o f  [0, 1]-morph- 
isms, where  [0, 1] is the SOP defined in Example  4. 

Theorem 4.2. If P is a SOP, then any partial [0, l ] -morphism qb0 on P 
has an extension to a [0, l ] -morphism on P. 

Proof Applying Lemma 4.1, there exists a maximal  partial [0, l]- 
morphism + that extends +0. Assume that D(+)  ¢ P, and let a • P\D(+). 
Suppose a '  (and hence, a") is in D(~b). If PI = D(+)  U {a}, then PI is a 
sub-SOP of  P that properly contains D(qb). Define +l:  Pi ~ [0, !] by ~bl(b) 
= ~b(b) if b • D(qb) and ~bl(a) = qb(a"). Then qb I properly extends qb and 
qbl(b') = 1 - ~bl(b) for every  b • PI. To show that qbl is a partial [0, l]- 
morphism, let b, c • D(qb) with b <- c. Then 

qb,(b) = qb(b) -< qb(c) = qbl(c) 

If b • D(~b) and b < a, then a '  --< b' ,  so 

~bl(a') = ~b(a') -< ~b(b') = ~bl(b') 

Hence,  

~b+(b) = 1 - cbl(b') -< 1 - ~biCa') = ~bt(a) 

Similarly, a <-- b implies that ~bt(a) -< ~bt(b). Hence,  ~b~ is a partial [0, 1]- 
morphism that properly extends +. This contradicts the maximali ty o f  +. We 
conclude that a', a" e P\D(+). Let  P1 = D(~b) U {a' ,  a"}. Then Pi is a sub- 
SOP of  P and we define +l:  Pl --> [0, 1] as follows. I f b  • D(+) ,  +i (b)  = 
+(b).  Let 

~-i = sup{+(b):  b • D(qb), b < a"} 

X2 = inf{ qb(b): b • D(+) ,  b > a"} 
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I f  b, c e D ( + )  and b < a" < c, then gb(b) -< ~b(c). Hence ,  hi --< X~_. I f  hi --< 
1/2 ----- X2, let X = 1/2, and otherwise,  let X = XI. Not ice  that h~ <- ~. <- Xz. 
Define ~bj(a") = X and qbl(a') = 1 - h. Then qbt(c') = 1 - +1(c) for all c 

P1- I f  c, d E D(gb) and c <- d, then +1(c) --< gbl(b). Suppose  a '  -< a". I f  
= t/2, then gbt(a") = + l ( a ' )  = 1/2. I f  X > 1/2, then ~b~(a") = Xi > 1/2, 

so qbl(a') < 1/2 and + l ( a ' )  < gbl(a"). Suppose  ~, < 1/2. Then  there exists a 
b E D(qb) such that a" < b and +(b)  < 1/2. But b '  -< a '  -< a" < b, so qb(b') 
-< qb(b) < 1/2, which is a contradiction.  Suppose  a" -< a ' .  If  h = 1/2, we 
again have ~bl(a") = +1(a ' )  = 1/2. I f  h < 1/2, then gb~(a") = XI < 1/2, so 
+ l ( a ' )  > 1/2. Hence,  + l (a" )  < d~l(a'). Suppose  h > 1/2. Then there exists  
a b E D(qb) such that b < a" and gb(b) > 1/2. But b '  -> a '  -> a" > b, so 
qb(b') -> +(b)  > 1/2, which is a contradict ion.  Suppose  c e D(qb) and c < 
a". Then  

+~(c)  = + ( c )  <- Xl -< X = +l(a")  

Suppose  c ~ D(qb) and a" < c. Then  

qbl(c) = qb(c) -> X2 -> X = +t (a")  

Suppose  c E D(qb) and c < a ' .  Then  a" <-- c', so by the above,  + l (a")  -< 
gbl(c'). Hence,  

~bl(c) = 1 - gbj(c') -< 1 - + l (a")  = gbl(a') 

Finally, suppose  c ~ D ( + )  and a '  < c. Then  c '  <- a", so qbl(c') <- +l (a") .  Hence,  

qbl(c) = 1 - + t ( c ' )  >-- 1 - d~(a") = qbl(a') 

We concluded that gb~ is a partial [0, l ] -morph i sm that proper ly  extends +.  
This  again contradicts  the maximal i ty  o f  qb. Hence,  D ( + )  = P, so gb is a 
[0, 1] -morphism on P that extends  +o- • 

To illustrate the utility of  the abundance  of  [0, l ] -morph i sms ,  we now 
character ize various propert ies  in terms of  these morphisms .  Other  results o f  
this type will be given in later sections.  

Corollary 4.3. Let P be a SOP and let M be the set o f  all [0, I ] -morph i sms  
on P. (i) a ~ P is nonisotropic  if and only if there exists an m ~ M such 
that m(a) = 1. (ii) a ~ P is isotropic if and only if re(a) <-- 1/2 for  all m 
M. (iii) a ~ P is s t rongly isotropic if  and only if m(a) = I/2 for  all m e M. 
(iv) P is complemen t ing  if and only if for every  a ~ 0 in P there exists  an 
m e M such that re(a) = 1. (v) P is a unit SOP if and only if for  every  a 

0 in P there exists an m ~ M such that re(a) 4= O. 

Proof (i) Suppose  a E P is nonisotropic and let PI be the sub -SOP 
given by 

Pl = {0, 1, 1', a, a ' ,  a"} 
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Since a -< 1, we have  I '  -< a ' ,  and since a '  --< 1, we have 1' <- a". I f  a -< 
1', then a -< 1 = 1" = a ' ,  which is a contradict ion.  

Case 1. Assume  that a and a '  are related. Then a '  <- a, so a '  --< a". 
Define the partial [0, 1] -morphism mt with domain  PI by ml(0)  = m l ( l ' )  = 
ml(a') = 0, m j ( l )  = ml(a) = ml(a") = 1. Apply ing  Theorem 4.2, we can 
extend m~ to an m • M. 

Case 2. Assume  that a and a '  are unrelated but a '  and a" are related. 
We cannot  have  a" --- a ' ,  since then a ----. a" --< a ' .  Hence,  a '  ----- a" and we 
proceed as in Case 1. 

Case 3. Assume  that a, a '  and a ' ,  a" are unrelated. Again proceed as 
in Case 1. If  a is isotropic, then a --< a ' .  Hence,  for any m E M we have 
m(a) <- m ( a ' )  = 1 - re(a), so re(a) <-- 1/2. We conclude that re(a) ¢: 1 for 
every  m • M. Parts (ii) and (iii) fo l low f rom (i). Part (iv) fol lows f rom (i) 
and L e m m a  2.2(iv). (v) I f P  is a unit SOP and a ~ 0, then the [0, 1 ] -morph i sm 
4) def ined in Example  4 satisfies qb(a) v~ 0. Conversely ,  if  P is not a unit 
SOP, then 1' :/: 0 and yet m ( l ' )  = 1 - m ( l )  = 0 for all m e M. • 

5. C L O S E D ,  R E G U L A R  S O P s  

We have seen f rom Examples  4 - 6  that there are important  closed, regular  
SOPs.  In this section we character ize  such SOPs  in terms o f  their [0, l]-  
morph i sm sets and their representat ions as function spaces.  Al though the 
proof  of  the next result is tedious, we present  it in detail because  various 
parts will be needed for  subsequent  theorems.  

Theorem 5.1. I f  P is a closed,  regular  SOP, then P has an order-determin-  
ing set o f  [0, 1]-morphisms.  

Proof Let  M be the set o f  all [0, 1 ] -morph i sms  on P. It suffices to show 
that if a,  b • P with a :~ b then there exists an m • M such that m(a) > 
m(b). Assume  that a :~ b and form the sub -SOP 

Pl = {0, l , a , b , a ' , b ' }  

It suffices to find a partial [ 0 - 1 ] - m o r p h i s m  m with domain  PI such that m(a) 
> re(b) because  we can then apply T h e o r e m  4.2 to extend m to a [ 0 -1 ] -  
morph i sm on P. In the fol lowing we a lways  have m(0) = 0, re ( l )  = 1. 

Case 1. Assume  that a,  b, a ' ,  b '  are nonisotropic.  
(i) b < a, b < a ' .  Then b < a <- b ' ,  contradiction.  
(ii) b < a, a '  --< b. Then a '  --< b < a,  contradiction.  
(iii) b < a, b and a '  unrelated. Then  a '  < b ' .  Let re(a) = m(b') = 1, 

m(b) = m(a') = O. 
(iv) b and a unrelated, b < a ' .  Let  m be as in (iii). 
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(v) b, a unrelated and b, a '  unrelated. Let m be as in (iii). 

Case 2. Assume that a, b, a '  are nonisotropic and b '  ~ b. 
(i) b < a, b ~ a ' .  Then b < a ~ b ' ,  contradiction. 
(ii) b < a, a '  ~ b. Then a '  -< b < a, contradiction. 
(iii) b < a, b and a '  unrelated. Then b '  -< b < a, contradiction.  
(iv) b and a unrelated, b --< a ' .  Then a --< b '  ~ b, contradiction.  
(v) b, a unrelated and b, a '  unrelated. Let re(a) = 1, m(a ' )  = O, m(b)  

= m(b ' )  = I/2. 

Case 3. Assume that a, b, b '  are nonisotropic and a '  -< a. 
(i) b < a, b -< a ' .  Then b < a - b ' ,  contradiction. 
(ii) b < a, a '  -< b. Let m be as in Case l(iii). 
(iii) b < a, b and a '  unrelated. Let m be as in (ii). 
(iv) b and a unrelated, b -< a ' .  Then b ~ a '  <- a, contradiction. 
(v) b, a unrelated and b, a '  unrelated. Let m be as in (ii). 

Case 4. Assume that a, b ' ,  a '  are nonisotropic and b --< b ' .  
(i) b < a, b --< a ' .  Let m be as in Case l(iii). For  ( i i ) - (v)  let m be as 

in (i). 

Case 5. Assume that b, a ' ,  b '  are nonisotropic and a --< a ' .  
(i) b < a, b -< a ' .  Then b -< a '  < b ' ,  contradiction. 
(ii) b < a, a' <- b. Then b < a -< a '  -< b, contradiction. 
(iii) b < a, b and a '  unrelated. Then b < a -< a ' ,  contradiction. 
(iv) b and a unrelated, b --< a ' .  Let re(a) = m(a ' )  = 1/2, m(b) = O, 

m(b ' )  = 1. 
(v) b, a unrelated and b, a '  unrelated. Let m be as in (iv). 

Case 6. Assume that a, b are nonisotropic and a '  --< a, b '  --< b. Since 
P is regular, we have a '  --< b. 

(i) b < a. Let m be as in Case 2(v). 
(ii) b and a unrelated. Let m be as in (i). 

Case 7. Assume that a ' ,  b '  are nonisotropic and a --< a ' ,  b -< b ' .  Since 
P is regular, we have a -< b ' .  

(i) b < a. Let m be as in Case 5(iv). 
(ii) b and a unrelated. Let  m be as in (i). 

Case 8. Assume that a and a '  are nonisotropic and b = b ' .  
(i) b < a. Then b '  < a. Let m be as in Case 2(v). 
(ii) b and a unrelated. Then b and a '  are unrelated. Let m be as in (i). 

Case 9. Assume that b and b '  are nonisotropic and a = a ' .  
(i) b < a. Then b < a ' .  Let m be as in Case 5(iv). 
(ii) b and a unrelated. Then b and a '  are unrelated. Let m be as in (i). 
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Case I0. Assume that a and b' are nonisotropic and b <-- b ' ,  a -< a ' .  
Let m be as in Case l(iii). 

Case 11. Assume that a '  and b are nonisotropic and a <- a', b' <-- b. 
Since P is regular, a - b, which is a contradiction. 

Case 12. Assume that a is nonisotropic and b, a', b' are isotropic. Then 
b = b',  b < a, and a '  < b. Let m be as in Case 2(v). 

Case 13. Assume that b is nonisotropic and a, a ' ,  b' are isotropic. Then 
a -< b, which is a contradiction. 

Case 14. Assume that a '  is nonisotropic and a, b, b' are isotropic. Then 
a <-- b, which is a contradiction. 

Case 15. Assume that b' is nonisotropic and a, b, a '  are isotropic. Let 
m be as in Case 5(iv). 

' b' Case 16. Assume that a, b, a ,  are isotropic. Then a = b, which is 
a contradiction. • 

Let X b e  a nonempty set and let Q be a SOP. For f, g ~ QX d e f i n e f  < 
g i f f (x )  -< g(x) for all x ~ X and d e f i n e f '  b y f ' ( x )  = f (x) '  for all x ~ X. 
Moreover, we define 0, 1 E QX by 0(x) = 0, l(x) = 1 for x E X. Let P C 
QX satisfy 0 E P a n d f  E P implies f '  ~ P. Then (P, 0, 1, -<, ') is a SOP 
that will call a Q-function SOP. The [0, l]-function SOPs are particularly 
interesting because they correspond to a fuzzy logic or a fuzzy set theory. 
We shall presently show that the class of closed, regular SOPs coincides with 
the class of [0, l]-function SOPs. 

It is also of interest to consider the sub-SOP {0, 1 } C [0, 1]. Of course, 
{0, 1} is the simplest nontrivial SOP. Let P be a {0, I }-function SOP. If we 
identify a set with its characteristic function, then P becomes a set-SOP. 
Moreover, in this case, if A ~ P is considered as a set, then A' = A c. We 
then call (P, O,  X, C, c) a standard set-SOP. We shall also show that the 
class of  orthoposets coincides with the class of  standard set-SOPs. 

Theorem 5.2. (i) A SOP P has an order-determining set of  Q-morphisms 
if and only if P is isomorphic to a Q-function SOP. (ii) Suppose P has an 
order-determining set of  Q-morphisms. If Q is a closed, regular, complement- 
ing, sharp, unit SOP, respectively, then P has these properties, respectively, 

Proof (i) Suppose P has an order-determining set of  Q-morphisms M. 
Define c~: P ---) QM by [~b(a)](m) = re(a) and let F = {~b(a): a ~ P}. Since 

[+(a')](m) = m(a') = m(a)' = [+(a)](m)' = [+(a)'](m) 

for all m ~ M, we have ~b(a') = ~b(a)'. We conclude t h a t f  ~ F impl ies f '  
') Q-function SOP. E F. Since qb(0) = 0, we have 0 ~ F, so (F, 0, 1, -<, is a 
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If  a, b • P with a v~ b, since M is order determining,  there exists an m • 
M such that m(a) ~ re(b). Hence,  [do(a)](m) ¢ [do(b)](m), so d0(a) ¢ do(b). 
We conclude that do: P ~ F is bijective. To show that do is an isomorphism,  
suppose a, b e P with a -< b. Then  

[do(a)](m) = m(a) <-- re(a) = [do(b)](m) 

for all m • M, so do(a) --< do(b). Finally, if do(a) -< do(b), then for any m • 
M we have 

m(a) = [do(a)](m) <- [do(b)](m) = re(b) 

Since M is order determining,  we have a <- b. We conclude  that P and F 
are isomorphic.  Conversely,  suppose there exists an i somorphism do: P --+ F, 
where F C QX is a Q-funct ion S O E  For x • X, define mx: P -+ Q by mx(a) 

= [do(a)](x). Then mx(0) = [do(0)](x) = 0 and 

mx(a') = [do(a')](x) = [do(a)'](x) = [do(a)](x)' = mx(a)' 

If  a, b • P with a -< b, then do(a) -< do(b) so 

mx(a) = [do(a)](x) < [do(b)](x) = rex(b) 

Hence, for any x • X, m,  is a Q-morph i sm on P. Suppose  mx(a) <- m~(b) 
for all x E X. Then 

[do(a)](x) = mx(a) <. mx(b) = [do(b)](x) 

for every x E X, so do(a) <- do(b). It follows that a -< b, so {m~: x e X} is 
an order-determining set o f  Q-morphisms  on P. (ii) Let M be an order- 
determining set o f  Q-morphisms  on P. Assume that Q is closed. Then  for 
any a e P, m • M, we  have re(a") = m(a)" = m(a). Since M is order  
determining, we have a" = a, so P is closed. Assume that Q is regular. Let 
a, b • P with a _L a and b _t_ b. Then m(a) £ m(a) and re(b) _L rn(b) for 
every m e M. Hence, m(a) _L m(b), so m(a) <- re(b)' = m(b') for every m 
• M. Since M is order  determining, a --< b ' ,  so a _L b. Assume that Q is 
complement ing.  If  b -< a, a ' ,  then m(b) <<. m(a), m(a)'. Hence,  m(b) <- m(a) 
^ m(a)' = 0, so m(b) = 0 for every m • M. Hence, b = 0, so P is 
complement ing.  The proof  that Q is sharp implies P is sharp is similar. 
Assume that Q is a unit S O E  Then m ( l ' )  = m ( l ) '  = 1' = 0 for  all m • M. 
Hence, 1' = 0, so P is a unit S O E  m 

Theorem 5.3. For a SOP  P, the fol lowing statements are equivalent.  (i) 
P is closed and regular, (ii) P has an order-determining set o f  [0, 1 ]-morphisms,  
(iii) P is isomorphic to a [0, l ] - funct ion SOP. 
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Proof That (i) implies (ii) is given by Theorem 5.1. That (ii) and (iii) 
are equivalent is given by Theorem 5.2(i). Since [0, 1] is closed and regular, 
that (ii) implies (i) is given by Theorem 5.2(ii). • 

Another interesting sub-SOP of [0, 1] is {0, 1/2, 1} and of course this 
sub-SOP is closed and regular. An examination of  the proof of  Theorem 4.2 
and Theorem 5.1 shows that a closed, regular SOP has an order-determining 
set of {0, 1/2, 1 }-morphisms. This is analogous to a three-valued logic. We 
thus have the following corollary. 

Corollary 5.4. For a SOP P, the following statements are equivalent. (i) 
P is closed and regular, (ii) P has an order-determining set of {0, 1/2, 1 }- 
morphisms, (iii) P is isomorphic to a {0, 1/2, 1 }-function SOE 

We now consider orthoposets. Since an orthoposet is nonisotropic, Case 
! of  the proof of Theorem 5.1 and Theorem 5.2 give the following corollary. 
That (i) implies (iii) in this corollary has been proved by Katrno~ka (1982). 

Corollary 5.5. For a SOP P, the following statements are equivalent. (i) 
P is an orthoposet, (ii) P has an order-determining set of {0, 1 }-morphisms, 
and (iii) P is isomorphic to a standard set-SOP. 

6. C L O S E D  S O P s  

We have seen in Section 5 that a closed, regular SOP has an order- 
determining set of  [0, 1]-morphisms. Theorem 5.2(ii) shows that this result 
cannot hold for an arbitrary closed SOP P. However, we can obtain a slightly 
weaker result if P contains at most one strongly isotropic element. A set of 
Q-morphisms M on a SOP P is separating if re(a) = re(b) for all m ~ M 
implies that a = b. 

Theorem 6.1. For a SOP P, the following statements are equivalent. (i) 
P is closed and contains at most one strongly isotropic element, (ii) P has a 
separating set of  [0, 1 ]-morphisms, (iii) there is a bijective morphism from 
P onto a [0, 1]-function SOP. 

Proof. Suppose (i) holds and let M be the set of all [0, 1]-morphisms 
on P. To prove (ii), it suffices to show that if a, b ~ P with a =~ b, then 
there exists an m E M such that re(a) 4= re(b). We can assume without loss 
of  generality that a ~ b. Proceeding as in the proof of  Theorem 5.1, we form 
the sub-SOP 

Pj = {0, 1, a , b , a ' , b ' }  

As before, it suffices to find a partial [0, 1]-morphism m with domain Pl 
such that re(a) ~ re(b). Cases 1-10, 12, 15, and 16 in the proof of Theorem 



1160 Gudder 

5.1 apply unchanged.  In Case 11, we let m(a) = m(b') = 0 and m(a') = 
re(b) = 1. In Case 13, we let m(a) = m(a') = 1/2, m(b') = 0, re(b) = 1. In 
Case 14, we let re(b) = m(b') = 1/2, re(a) = 0, m(a') = 1. That  (ii) and 
(iii) are equivalent  is similar to the proof  o f  Theorem 5.2(i). Finally, suppose 
(ii) holds and M is a separating set o f  [0, 1]-morphisms on P. If a, b e P 
are strongly isotropic, then m(a) = re(b) = 1/2 for every m e M. Hence,  
a = b .  • 

Letting So = {0, 1 }, $1 = {0, I/2, 1 }, we have seen that an or thoposet  
has an order-determining set of  So-morphisms and a closed, regular SOP has 
an order-determining set of  Swmorphisms.  Moreover ,  it is clear that So and 
S~ are the simplest SOPs with these properties.  We now seek a SOP $2 that 
has this property for an arbitrary closed SOE By Theorem 5.2(ii), $2 must  
be closed, but not regular. The  simplest such SOP is Sz = {0, 1, en [3}, where 

= a ' ,  [3 = [3' (c~ and t3 are strongly isotropic), and o~, [3 are unrelated. 
Notice that $2 is the horizontal sum $2 = S~ • St. 

Theorem 6.2. If P is a closed SOP, then any partial Sz-morphism +0 on 
P has an extension to an Sz-morphism on P. 

Proof. Applying Lemma  4.1, there exists a maximal  partial Sz-morphism 
~b that extends +o- Assume that D(qb) ~: P and let a ~ P\D(d~). Then a '  
P\D(d~) and we form the sub-SOP Pt = D(gb) U {a, a '} .  Def ine  +l:  P3 ---) 
$2 as follows. If  b E D(~b), ~bl(b) = ~b(b). Noticing that Sz is a lattice, let 

kt = v{d~(b): b ~ D(qb), b < a} 

kz = ^{~(b) :  b ~ D(gb), b > a} 

We then have kj <- h2. Define 

i if hi = h 2 = 0  
~ l (a )  = 1 if ht = h2 = 1 

if h~ = 0 ,  h 2 =  1 or if X i o r h z = a  
if h l o r k z =  13 

and define + t ( a ' )  = d~t(a)'. Notice that hi --< dp~(a) -< X2 and ~bl(c') = + l (c ) '  
for all c ~ P~. If  b, c E D(+)  with b -< c, then ~bl(b) -< ~bl(c). Suppose that 
a <-- a ' .  Then  ~bl(a) -< + l ( a ' )  unless + t (a )  = I. But then hi = 1, so there 
exists a b E D(+)  such that b < a and ~b(b) = 1 or there exists b, c E D(+)  
such that b, c < a and qb(b) = a ,  +(c)  = 13 (or vice versa). In either case 
we have a <- a' < b'. Since ~.z = 1, we conclude that + (b ' )  = 1, which is 
a contradiction. Suppose that a '  --< a. Then + l ( a ' )  <-- + t (a )  unless + t (a )  = 
0. But then h2 = 0, so there exists a b ~ D(~b) such that a < b and ~b(b) = 
0 or there exist b, c E D(~b) such that a < b, c and ~b(b) = a ,  +(c)  = 13 (or 
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vice versa). In either case b' < a '  --- a. Since k~ = 0, we have &(b') = 0, 
which is a contradiction. Next suppose that b E D(~b) with b < a. Then qb(b) 
-< hi <-- ~bl(a). If b ~ D(cb) with a < b, then d/fib) -> k2 -> d~l(a). Suppose 
b E D(~b) with b < a ' .  Then a < b',  so ~j(a)  --< qb(b') = qb(b)'. Hence, 
~(b) -< d~(a)' = ~l(a ' ) .  Finally, suppose b ~ D(~) with a '  < b. Then b' 
< a, so ~b(b)' = ~b(b') -< ~l(a). Hence, qbl(a') = ~bl(a)' -< d~(b). We conclude 
that ~b~ is a partial S2-morphism on P that properly extends ~b. This contradicts 
the maximality of ~b. Hence D(qb) = P. m 

Corollary. 6.3. For a SOP P, the following statements are equivalent. (i) 
P is closed, (ii) P has an order-determining set of S2-morphisms, and (iii) P 
is isomorphic to an S2-function SOP. 

Proof Suppose (i) holds and let M be the set of  all S2-morphisms on P. 
We proceed as in the proof of Theorem 5.1, except we now apply Theorem 
6.2 and show that if a ~ b, then there exists an m E M such that m(a) 
re(b). Cases 1-10, 12, and 15 in the proof of Theorem 5.1 apply by replacing 
1/2 with et. In the other cases, we let re(a) = m(a') = et, m(b) = m(b') = 
[3. We conclude that (i) implies (ii). That (ii) and (iii) are equivalent follows 
from Theorem 5.2(i). That (ii) implies (i) follows from Theorem 5.2(ii). • 

As in Example 4 of  Section 3, let W be the horizontal sum W = [0, 1] 
• [0, I]. Then W is an effect algebra and W can also be considered as a 
closed SOP with the same order and '. Since $2 is a sub-SOP (or sub-effect 
algebra) of  W, we know that any closed SOP has an order-determining set 
of W-morphisms. Moreover, Corollary 6.3 holds with $2 replaced by W. We 
have introduced W because W-valued effect morphisms are more useful than 
S2-valued effect morphisms. The reason for this is that W contains long strings 
of sums, while $2 does not. Our next theorem shows that any closed SOP 
admits a canonical imbedding into an effect algebra. Let LI be a subset of  
an effect algebra L. We say that L~ generates L if the smallest sub-effect 
algebra of  L that contains L~ is L itself. We shall also need the following 
result. If L is an effect algebra and X is a nonempty set, we can organize L x 
into an effect algebra as follows. For f ,  g ~ L x, we say that f • g exists if 
f (x )  if) g(x) exists for all x ~ X and we then define f E) g(x) = f (x )  E) g(x). 
Define 0(x) = 0 and l(x) = 1 for all x ~ X andf ' (x )  = f (x ) '  for all x e X. 
It is easy to show that (L x, 0, 1, O) is now an effect algebra with order f -  < 
g i f f (x)  ----- g(x) for all x ~ X. 

Theorem 6.4. Let P be a closed SOP and let M be an order-determining 
set of  W-morphisms on P. Then there exists an effect algebra Q, an order- 
determining set of W-valued effect morphisms ~(M) on Q, a SOP isomorphism 
~b: P ~ ~b(P) C Q such that qb(P) generates Q, and a bijection ~: M ~ d)(M) 
such that +(m)(qb(a)) = m(a) for every a ~ P, m E M. If QI is an effect 
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algebra with maps do~: P ---> QI, ~): M ---> ~l(M) satisfying the previous 
conditions, then Qt and Q are isomorphic. Moreover, if a, b E P with a _L 
b and there exists a c E P such that m(c) = m(a) • m(b) for all tn ~ M, 

then do(c) = do(a) q) do(b). 

Proof Applying Corollary 6.3 and the proof  of  Theorem 5.2(i), we have 
that the map do: P --> W M given by do(a)(m) = m(a) is a SOP isomorphism 
onto its range do(P). Now W M is an effect algebra and we define Q to be the 
sub-effect algebra of W M generated by do(P). For m e M and f E Q we 
define ~(rn)(f) = f (m)  E W. Then for any a e P, m E M, we have 

t~(m)(do(a)) = do(a)(m) = m(a) 

Now ~(rn) is a W-valued effect morphism on Q since ~(m)(0) = 0(m) = 0 
and i f f O  g exists, f ,  g E Q, then 

t~(m)(f O g) = ( f  O g)(m) = f (m)  • g(m) = t~(m)(f) G t~(m)(g) 

To show that ~: M ~ tb(M) is bijective, suppose ~(ml) = ~(m2). Then for 
any a E P we have 

m l(a) = t[J(ml)(do(a)) = t~(m2)(do(a)) = mz(a) 

Hence, ml = m2. To show that t~(M) is order determining on Q, suppose f ,  
g e Q satisfy ~(m)(f)  -< ~(m)(g) for every m e M. T h e n f ( m )  --< g(m) for 
every m ~ M, so f - <  g. 

Let Qj be an effect algebra with maps dol: P ---> Qi, ~l: M ---> t~l(M) 
satisfying the given conditions. Define the map [3: Qi ~ W*~(~ by [3(q)(t~l(m)) 
= t~l(m)(q). It is easy to show that [3 is an effect isomorphism from Ql onto 
[3(Q0- Define or: W M --, W 'h(~  by a(f)(t[h(m)) = f (m).  Again, it is easy to 
show that e( is an effect isomorphism. For any a e P, m e M, we have 

[3[dol(a)](t~t(m)) = t[~l(m)[dol(a)] = re(a) = do(a)(m) 

= ~x[do(a)](t~l(rn)) 

Hence, e([do(P)] = [3[dot(P)], so do(P) = ot -I  o [3[do1(P)]. Since do~(P) C_ Q1, 
we have do(P) C_ e( -1 o [3(Q0- The fact that d0(P) generates Q now gives that 
Q c_ o~ - I  o [3(Q0. Similarly, [3[QI(P)] _c e((Q) and since dol(P) generates QI, 
we have [3[Qm] c_ e~(Q). Hence, Q = ot - I  o [3(Q~) and ~-~ o [3 is an effect 
isomorphism from Q~ to Q. 

Finally, suppose a, b ~ P satisfy the last statement of  the theorem. Then 
for every m ~ M, we have 

do(c)(m) = m(c) = re(a) ~ m(b) = do(a)(m) ~ do(b)(m) 

= [do(a) • do(b)l(m) 

Hence, d0(c) = do(a) • do(b). • 
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Let (P, M) be a pair where P is a closed SOP and M is an order- 
determining set of W-morphisms on P. Then Theorem 6.4 states that there 
exists a unique (up to isomorphism) effect algebra Q that has an order- 
determining set of W-valued effect morphisms into which P can be canonically 
imbedded. Moreover, if there are elements of P that "want" to have sums, 
then the imbedding preserves such sums. In particular, if P is already an 
effect algebra and the elements of M are effect morphisms, then Q merely 
reproduces P. 

If P is a closed, regular SOP and M is an order-determining set of [0, 
1 ]-morphisms on P, then t~(M) in Theorem 6.4 becomes an order-determining 
set of states on Q. If P is an orthoposet and M is an order-determining set 
of {0, 1 }-morphisms on P, then Theorem 6.4 gives the following strong 
statement. The orthoposet P can be imbedded into an orthoalgebra of  sets 
(Q, O, X, G)  where A G B is defined if and only if A and B are disjoint and 
in this c a s e A ( ~ B  = A  U B .  

7. SHARP, UNIT SOPs 

Although closed or complementing SOPs must be unit SOPs, this does 
not hold for sharp SOPs. For example, let P = {0, 1', 1 }, where 0 < 1' < 
1. Then P is not a unit SOP, but P is sharp. 

In this section, we assume that P is a sharp, unit SOP. We require the 
unit condition in order to avoid tedious complications. This condition also 
has the advantage of making P complementing. Continuing our previous 
program, we introduce the simplest sharp, unit SOP that is not closed. This 
is the SOP $3 = {0, cx, cx', 0~", 1 }, where 0 < c~ < oL" < 1, 0 < or' < 1, 
and there are no other relations. As usual we obtain the following results. 

Theorem 7.1. If P is a sharp, unit SOP, then any partial S3-morphism 
~bo on P has an extension to an S3-morphism ~b on P. 

Proof As before, there exists a maximal, partial S3-morphism ~ on P 
that extends qbo. Suppose D(~b) 4 = P and let a ~ P\D(dp). Suppose a '  (and 
hence a") is in D(~b). Then Pi = D(~b) U {a} is a sub-SOP of P. Define ~bl: 
Pl ---> $3 by ~bj(b) = ~b(b) if b E D(~b) and define 

I I  if ~ ( a ' ) = 0 ;  0 i fd~ (a ' )=  1 
if d0(d) = a '  and v{qb(b): b ~ D(~), b <-- a} --< a 

qbl(a) = et" if ~b(a') = a '  and v{qb(b): b E D(~b), b --< a} :~ a 
L a '  if ~(a ' )  = a" 

Notice that d~(b) ¢ a if b e D(qb) and b is closed. Indeed, otherwise 

a = + ( b )  = + ( b " )  = + ( b ) "  = a "  
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which is a contradiction.  Also,  i f  b E D ( ~ )  with b < a,  then a '  ----- b ' ,  so 
qb(a') --< ~ ( b ' ) .  Hence ,  if  d~(a') = ~ '  or  1, then d)(b') = a '  or  1, so qb(b) = 
0, or, or or". Therefore ,  

v{~b(b): b ~ D(qb), b <- a} = 0, or, or a"  

Now ~bt extends  ~ and ~bt(b') = qb~(b) for  every  b ~ Pt.  I f  b, c ~ D(~b) 
with b --< c, then ~b~(b) - -  d~l(c). I f  b E D(~b) with b < a, then a' <- b', so 
~b(a') -< ~b(b'). I f  ~ ( a ' )  = 0, then ~bl(a) = 1, so d~l(b) -< d~l(a). I f  ~b(a') = 
I, then d~(b)' = qb(b') = 1, so ~b(b) = 0. Hence,  ~ t (b )  -< ~bl(a). I f  qb(a') = 
a ' ,  then d~(b') = a '  or 1. I f  ~ ( b ' )  = a ' ,  then ~b(b) = a or  a" .  I f  d~(b) = a ,  
then ~bl(b) -< ~bl(a) because ~b~(a) = e~ or a".  I f  d?(b) = or", then ~bl(b) = 
qbt(a). If  ~ ( b ' )  = 1, then qbl(b) = 0 -< qbl(a). I f  d~(a') = or", then ~b(b') = 
a"  or  1, so ~ (b )  = or' or  0. We again have  ~bl(b) - ~bl(a). Next  suppose  that 
a < b. Then  b '  <-- a ' ,  so ~ ( b ' )  <- ~ ( a ' ) .  I f  ~b(a') = a ' ,  then ~ ( b ' )  = a '  or  
0. I f  qb(b') = a ' ,  then qb(b) = a or  a" .  In the case o f  qb(b) = a" ,  we  have  
qbl(a) -< qbl(b) since ~bl(a) = a or a" .  Suppose  ~b(b) = a .  I f  qbl(a) = cx, then 
~bl(a) <-- ~ t (b) .  If  ~bt(a) = a", then there exists a c ~ D(~b) with c < a and 
~b(c) = a".  Then c < a < b, so qb(b) >- a",  which is a contradict ion.  I f  ¢b(a') 
= et", then ~b(b') = 0 or a" .  Hence,  qb(b) = 1 or  a ' .  In ei ther case  d~l(a) -< 
~b~(b). We conclude that ~b~ is a partial S3-morphism that p roper ly  extends  
~b, which is a contradiction.  

We then have  a, a', a" ~ P \D(~) .  Form the sub -SOP P~ = D(qb) Ct 
{a ' ,  a"}. Define ~b~: P~ --9 $3 by qb~(b) = ~b(b) if b ~ D(dp), qbt(a' ) = 1 if 
there exists a b ~ D(+)  with a" < b and ~b(b) = a and otherwise  

qbt(a') = v { + ( b ' ) :  b '  ~ D(~b), b '  < a ' }  (7.1) 

Finally, define ~b~(a") = + l ( a ' ) ' .  Then  +i(b')  = ~b~(b)' for  every  b ~ P~. 
Suppose  that b ~ D(+)  with b < a ' .  Then  b" < a ' ,  so ~b(b) ----- +(b")  --< 
~b~(a'). Suppose  that b ~ D(d~) with a '  < b. I f  c' E D(d~) with c '  < a ' ,  then 
c' < b. Hence,  ~b(c') -< qb(b). Hence,  if +~(a ' )  is given by (7.1), then 

qb(b) >- v{~b(c'):  c '  ~ O(d?), c '  < a ' }  = ~ ( a ' )  

Otherwise ,  there exists a c ~ D(qb) with a" < c and ~(c )  = a ,  in which  case 
~ ( a ' )  = 1. But  then b' <- a" < c, so ~ ( b ' )  -< ~b(c) = or. Hence ,  ~ ( b ' )  = 
0, so qb(b) = 1 and again ~b~(a') <- d~(b). Now suppose  that b ~ D(~b) with 
b < a". Then a '  <- b ' ,  so ~ ( a ' )  <- d~(b'). Hence,  qb(b) <- qb(b") -< qb~(a"). 
Finally, suppose that b ~ D(~b) with a" < b. Since b '  -< a ' ,  we  have ~b(b') 
- ~bt(a'). Suppose  that ~bl(a') = or'. Then ~b(b') = 0 or c~', so d)(b) = 1, c~, 
or a".  I f  ~ (b)  = 1 or or", then gp~(a") = a"  --< dp(b). If  qb(b) = a ,  then ~ ( a ' )  
= I, which is a contradiction.  Suppose  that ~b~(a') = a" .  Then  ~b(b') = 0 
or  a" ,  so ~(b)  = 1 or a ' .  In ei ther case,  ebb(a") = a '  --< ~b(b). I f  ~ l ( a ' )  = 
1, then qb;(a") = 0 <-- d~(b). If  qb~(a') = 0, then cb(b') = 0. Hence,  d~(b) = 
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1 and +t(a") --< +(b). We conclude that ¢l  is a partial S3-morphism that 
properly extends d~, which is a contradiction. Therefore, D(d~) = P and + is 
an S3-morphism on P. m 

Theorem 7.2. If P is a sharp, unit SOP, then P has an order-determining 
set of S3-morphisms. 

Lest we try the reader's patience, we omit the somewhat tedious proof. 
By now the proof of the following theorem is standard. 

Theorem 7.3. For a SOP P, the following statements are equivalent. (i) 
P is a sharp, unit SOP, (ii) P has an order-determining set of S3-morphisms, 
and (iii) P is isomorphic to an S3-function SOP. 

We close this section by mentioning that this program can be carried 
on to include complementing SOPs. For these we introduce a simple comple- 
menting SOP that is not sharp. This is the SOP S 4 = {0,  1, or, to, to' }, where 

0 = c ~ ' < t o ' < c ~ < o ~ " =  1, 0 < t o = t o " < c x <  1 

and there are no other relations. The counterparts of Theorems 7.1-7.3 hold 
for complementing SOPs with $3 replaced by $4. Of  course, one might like 
to carry this program to the extreme and prove such theorems for an arbitrary 
SOP, but this appears to be quite difficult. 

8. B A S I C  T E N S O R  P R O D U C T S  

This section introduces the concept of tensor products of SOPs, presents 
some examples, and constructs various basic tensor products. 

If P, Q, and R are SOPs, a bimorphism et: P x Q --~ R satisfies: (1) if 
a, b E P, c, d e Q, then a < b implies that c~(a, c) --< ~(b, c) and c -< d 
implies that c~(a, c) <- c~(a, d); (2) c~(a, c) ± c~(a', d) for all c, d c Q and 
~(a, c) _L c~(b, c') for all a, b e P; (3) ~(a, 1)' -< ~(a ' ,  1) and ~(1, b)' -< 
~(1, b') for all a • P, b e Q. 

Lemma 8.1. Let c~: P X Q --~ R be a bimorphism. (i) If a, b • P and 
c, d • Q with a -< b, and c < d, then ~(a, c) -< ~(b, d). (ii) ~(a, 1)' = 
c~(a', 1) and ~(1 ,  b)' = c¢(1, b') for all a e P, b • Q. (iii) If a / b, then 
c~(a, c) _L e~(b, d) for all c, d e Q and if c ± d, then c~(a, c) _l_ c~(b, d) for 
all a, b • P. (iv) If R is a unit SOP, then ~(a, 0) = ~(0, b) = 0 for all a, b 
• P. (v) I f R  is a unit SOP, then ~(-,  I) and c~(1, -) are morphisms from P 
and Q, respectively, into R. 

Proof. (i) Applying (1), we have 

c~(a, c) --< ~(b, c) --< e~(b, d) 



1166 Gudder 

(ii) Applying (2), we have e~(a', 1) -< or(a, 1)' and the result follows from 
(3). (iii) I f a  _L b, then a <- b ' ,  so by (1) and (2) we have 

oL(a, c) --- o~(b', c) -< a(b, d) '  

Hence e~(a, c) 3_ oL(b, d). (iv) Applying (i) and (ii), we have 

o~(0, 1)' = c~(0' ,  1) = or( l ,  1) = 1 

Since R is a unit SOP, we obtain 

a(0, 1) --- eL(0, 1)" = 1' = 0 

Hence, a(0, 1) = 0, so by (I) we have a(0, b) -< e~(0, 1) = 0. Thus a(0, b) 
= 0 and similarly a(a,  0) = 0. (v) This follows from (1), (ii), and (iv). • 

Notice that condition (2) is stronger than the condition a(a,  c) L et(a', 
c) that one might expect. Moreover, (2) is apparently stronger than the 
analogous condition for bimorphisms of orthoalgebras and effect algebras 
(Dvurerenskij, 1995; Foulis and Bennett, 1993). We have three replies to 
this criticism. First, one of the main motivations for studying these structures 
is to describe physical systems and (2) can be justified on physical grounds. 
Second, it is not hard to show that the counterpart to (2) holds in orthoalgebras 
and effect algebras. Third, (2) automatically holds in many natural examples. 

Example  1. Define a: [0, 1] X [0, 1] --~ [0, 1] by a(a,  b) = ab. It is 
clear that (1) and (3) hold. To prove (2), for any a, c, d ~ [0, 1] we have 

a ( c - d )  < a ( 1  - d)<-- 1 - d  

Hence, 

ac < 1 - d + ad = 1 - (1 - a)d = (a 'd ) '  

so a(a,  c) _L a (a ' ,  d). An argument similar to the proof of Lemma 3.5 shows 
that a is the only effect bimorphism from [0, 1] X [0, 1 ] to [0, 1]. 

Example  2. Let P be a SOL and define a: P X P --+ P by a(a,  b) = a 
^ b. Again, it is clear that (1) and (3) hold. To prove (2) we have 

a ^ c <-- a <-- a" <-- a " v d '  <-- (a' ^ d ) '  

Hence, a(a,  c) 3_ a(a ' ,  d). 

Example  3. Let P = 2 x, Q = 2 v, R = 2 xxY be standard set-SOPs and 
define cc P x Q --~ R by a(A, B) = A X B, where A x B is the usual set- 
theoretic Cartesian product. It is clear that (1)-(3) hold. 

Example  4. Let P = [0, 1]x, Q = [0, 1]~, R = [0, 1]XXYbe [0, 1]- 
function SOPs and define a: P X Q ~ R by oL(f, g) = f Q  g, where f ®  
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g(x, y) = f(x)g(y). Then (1) and (3) clearly hold and (2) follows from 
Example 1. 

Example 5. As in Example 6 of  Section 3, let P = {A E B ( H 0 : 0  -< 
A - < I } , Q  = {A • B ( H 2 ) : 0 - < A  <- I } , R  = {A • B(Hi ®Hz) :O <--A <- 
I}, where HI ® H2 is the usual tensor product and define ct: P × Q ~ R 
by ct(A, B) = A ® B. It is easy to verify (1) and (3). To verify (2), let A • 
P and C, D • Q. We must show that 

A ® C < - I @ I  - ( I - A )  Q D  

This is equivalent to showing that 

(ax, x)(Cy, y) <- I l x l lZ l ly l l  z - I l x l l2<Oy ,  y) + (Ax, xXOy, y) 

for all x • HI, y • //2. By Example 1, this inequality holds for all unit 
vector x • HI, y • H2. It then follows that the inequality holds for all x • 
Hb y E H2. 

We say that two SOPs P and Q are of  the same ~pe if  P and Q are 
both closed, regular, sharp, or complementing, respectively. Let P and Q be 
SOPs of the same type. A tensor product of P and Q is a pair (T, -r) where 
T is a SOP of this type and 'r: P x Q ---) T is a bimorphism satisfying (1) if 
ct: P x Q --) R is a bimorphism, where R is of  this type, then there exists 
a morphism qb: T ---) R such that a = qb o "r, and (2) T is generated by 
r (P  × Q). 

Lemma 8.2. If (T, "r) and (T*, "r*) are tensor products of  P and Q, then 
there exists a unique isomorphism ~b: T ~ T* such that "r* = 4) ° "r. 

Proof Since (T, "r) and (T*, "r*) are tensor products, there exist morphisms 
~: T ---) 7"* such that r* = ~ o -r and qb*: 7"* --~ T such that -r = ~* o "r*. 
Since "r(P X Q) and "r*(P × Q) generate T and T*, respectively, we have 

T = {'r(a, b), a'(a, b)' ,  a-(a, b)": (a, b) • P X Q} 

T* = {'r*(a, b), "r*(a, b)', "r*(a, b)": (a, b) • P × Q} 

Now for (a, b) • P X Q, we have 

qb*[qb('r(a, b))] = qb*['r*(a, b)] = "r(a, b) 

d0[qb*('r*(a, b))] = d~['r(a, b)] = "r*(a, b) 

Moreove~ 

+*[+('r(a, b)')] = qb*[+('r*(a, b))'] 

= +*[+(a'(a, b))]' = -r(a, b)' 
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t ~ n Similarly, 4)[4)*('r(a, b)')] = "r(a, b) , 4) [4)('r(a, b)")] = a-(a, b) , and 4)[4)*('r(a, 
b)")] = "r(a, b)". We conclude that 4)* = d0 - l ,  so 4) is an isomorphism. 
Clearly, 4) is unique. • 

Lemma 8.2 states that if the tensor product of  two SOPs exists, it is unique 
to within an isomorphism. We now construct some basic tensor products. First, 
consider the orthoposet So = {0, 1 }. 

Lemma 8.3. The tensor product of  So and So is (So, 'ro), where "r0(a, b) 
= ab for all a, b E So. 

Proof It is clear that To is a bimorphism. Let a :  So × So --> R be a 
bimorphism, where R is an orthoposet. Applying Lemma 8. I, we have 

a(0, 0) = o~(0, 1) = a(1,  0) = 0 

and c~(1, 1) = 1. Define 4): So ---> R by 4)(0) = 0, 4)(1) = 1. Then clearly, 
¢¢ is a morphism and o~ = 4) o %. Finally, it is trivial that So is generated by 
"r(So x So). • 

Next, consider the closed, regular SOP S~ = {0, 1/2, 1 }. Define the SOP 

Sl ® S1 = {0, 1/4, 1/2, 3/4, 1} 

where St @ SI is considered as a sub-SOP of  [0, 1]. Then S~ ® St is a closed, 
regular SOE 

Theorem 8.4. The tensor product of  SI and Si is (St ® Si, "r,), where 
"rl(a, b) = ab for all a, b e S,. 

Proof As in Example 1, "rl" Sl X S, ---) $1 ® St is a bimorphism. Since 
(1/4)' = 3/4, $1 ® $1 is generated by "rl(Si × S0. Let a:  $3 X $1 ---> R be 
a bimorphism, where R is a closed, regular SOE We then have 

1) = l )  = 1) '  

and similarly a(1,  1/2) = a ( t ,  1/2)'. Since R is regular, we have a ( l /2 ,  1) 
= a ( l ,  1/2). Define 4): Sl ® St ---> R by 4)(0) = a(0, 0), 4)(1/4) = a ( l / 2 ,  
1/2), 4)(1/2) = a ( l / 2 ,  1), 4)(3/4) = a ( l / 2 ,  1/2)', 4)(1) = a ( l ,  1). Then a = 
4) o 'rt and 4) preserves '. It is clear that if a <- b, then 4)(a) < ¢¢(b) for a, 
b ~ {0, 1/4, 1/2, 1}. Also, 4)(0) ~ 4)(3/4) -< 4)(1). Moreover, since 1/2 _1_ 
1/2, we have 4)(1/4), 4)(1/2) <- 4)(3/4). Hence, 4) is a morphism, m 

We now come to the closed SOP $2 = {0, t, e(, 13}, where oL = a ' ,  13 
= 13'. Define the set 

$2®$2 = { 0 ® 0 }  U {a@ b: a ,b  E S2, a ,b  
4:0} 1.3 { ( a @ b ) ' : a , b  ~ S2, a ,b  
 O,l/ 
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For "y E $2 ® $2 d e f n e  0 ® 0 -- "y <- 1 ® 1 and for a, b e {a, [3} define 
a Q b  < - a ®  1, 1 @ b - <  (a ® b)'. Define (0 ® 0)' = 1 @ 1,(1 ® 1)' = 
0 ® 0 ,  a n d f o r a  ~ {a, [3} d e f i n e ( l  ® a ) '  = 1 ® a , ( a ®  1)' = a ®  1. 
Finally, for a, b e {e~, [3} define the ' of  a ® b as the notation indicates. 

Theorem 8.5. The tensor product of Sz and Sz is ($2 ® Sz, 'rz), where 
"rz(a, 0) = "r2(0, a) = 0 ® 0 for all a E Sz and "rz(a, b) = a ® b for all a, 
b ~ 0 .  

Proof  It is straightforward to show that $2 ® $2 is a closed SOP (drawing 
the Hasse diagram helps) and it is clear that ~2(Sz x $2) generates $2 ® Sz. 
Since a <:- b implies that a ® c <-- b ® c for all c ~ $2, we have 'r2(a, c) --< 
"rz(b, c) for all c ~ $2. Since a ® b ± a '  ® c for all b, c ~ Sz, we have 
Tz(a, b) .1_ "rz(a', c) for all b, c ~ Sz. Moreover, "r,_(a', 1) = "rz(a, 1)' for all 
a E $2. By symmetry, we conclude that "rz is a bimorphism. Let e~: $2 × $2 
---+ R be a bimorphism, where R is a closed SOE Define qb: $2 ® $2 -4 R by 
+(a ® b) = ~(a, b) and ¢[(a  ® b)'] = a(a,  b)'. Then e~ = + o "rz and we 
must show that ¢ is a morphism. If a, b #: 0, 1, then 

~b[(a ® b)'] = e~(a, b)' = [¢b(a ® b)]' 

and 

+[(a ® 1)'] = +(a ® 1) = a(a ,  I) = ~(a ' ,  1) 

= [ ~ ( a ,  l ) ] '  = [ ¢ ( a  ® 1)]' 

Suppose a ® b -< c ® d. Then a --- c and b ~ d, so o~(a, b) -< a(c, d). 
Hence, +(a ® b) -< +(c ® d). Finally, suppose a ® b --- (c ® d) ' .  Then a 
_L c or b ± d, so or(a, b) _L e~(c, d). Hence, 

qb(a ® b) = e~(a, b) -< or(c, d) '  = +[(c ® d) ' ]  • 

Continuing with this program, we have the sharp SOP Ss = {0, 1, o~, 
o~', or"}. Define the set 

S 3 ® $ 3  = { 0 ® 0 }  U { a ® b : a , b  E S3, a, b 4:0}  

U { ( a ® b ) ' : a , b  E S3, a , b  4: O, 1} 

U {(a @ b)": a , b  ~ S3, a , b  #: O, 1} 

Define (0 ® 0)' = 1 ® 1, (1 ® 1)' = 0 ® 0, and for a ~ {a, a ' ,  a"} define 
(1 ® a) '  = 1 ® a ' ,  (a ® 1)' = a '  ® 1. Finally for a, b ~ {a, e~', a"} define 
the ' and the " of  a ® b as notation indicates. We next define --< on $3 ® $3 
as follows: 

(1) a ® b < - c ® d i f a < - c a n d b < - d .  
(2) (a ® b)' -< c ® d if a or b = 1 and this reduces to (1). 
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(3) a ® b < - ( c ® d ) ' i f a < - c '  o r b < - d  '. 
(4) ( a ® b ) '  < - ( c ® d ) ' i f c ® b < - a ® b .  
(5) ( a ® b ) '  < - ( c ® d ) " i f ( c ® d ) '  < - a ® b .  
(6) (a ® b)" -< (c ® d) '  i f c ® d - <  ( a ® b ) ' .  
(7) ( a ® b ) " - <  ( c ® d ) " i f a ® b - < c ® d .  
(8) a ® b < - ( c ® d ) " i f a ® b < - c ® d .  

The proof of the next lemma is similar to (but more involved than) the 
proof of Lemma 8.5. 

Lemma 8.6. The tensor product of $3 and $3 is ($3 ® $3, r3), where 7.3(a, 0) 
= "r3(0, a) = 0 ® 0 for all a e $3 and 7"3(0, b) = a ® b for a, b 4= 0. 

We also have similar definitions and results for the complementing 
SOP $4. 

9. TENSOR PRODUCTS OF SOPs 

We now give concrete representations of the tensor products of various 
types of SOPs. This is unlike the orthoalgebra or effect algebra theory, 
where tensor products are constructed abstractly in terms of the set of all 
bimorphisms (Dvure~enskij, 1995; Foulis and Bennett, 1993). If P C_ QX is 
a Q-function SOP and Q has a certain type, then it is easy to see that P has 
this same type. 

Theorem 9.1. If P C QX and R C Qr are Q-function SOPs, where Q 
= So, S~, Sz, $3, or $4, then the tensor product of P and R exists. 

Proof We denote the tensor product of Q and Q by (Q ® Q, t 3) and 
use the notation 13(a, b) = a ® b. Now L = (Q ® Q)XXr is a Q ® Q-function 
SOP of the same type as Q (and hence P and R). For f e P, g E R, define 
f ® g e L by f ® g(x, y) = f(x) ® g(y) and define "r: P X R ---> L by 
"r(f, g) = f ® g. To show that "r is a bimorphism, suppose f, g E P, h E R 
with f - <  g. Then f(x) <- g(x) for all X E x, so f(x) ® h(y) <- g(x) ® h(y) 
for all x ~ X, y ~ Y. Hence, 

"r(f, h) = f ® h <- g @ h = "r( g, h ) 

I f f  E P, g, h E R, thenf(x) ® g(y) L fix)' ® h(y) for all x E X, y E Y It 
follows that 

~(f, g) = f ®  g l f '  ® t7 = "r(f', h) 

Moreover, we have 

"r(f', 1) = f ' Q  1 = ( f ®  1)' = -r(f, 1)' 
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By symmetry, it follows that "r is a bimorphism. Letting 

T = { f ®  g, ( f ®  g)' ,  ( f ®  g)":f E P, g ~ R} 

we conclude that T is the sub-SOP of L generated by 'r(P X R). 
To show that (T, "r) is the tensor product of P and R, let c¢: P x R --4 

V be a bimorphism, where V is a SOP of the same type as Q. Define +: T 
--4 V by ~ ( f  ® g) = or(f, g), ~ ( ( f  ® g)') = or(f, g) ' ,  and qb((f ® g)") = 
a(f ,  g)". Then + preserves ' and a = qb o 'r. To show that qb is a morphism, 
s u p p o s e f ® g - < h ® i .  T h e n f < -  h a n d g - < : i ,  so 

qb(f® g) = a(f ,  g) -< a(h, i) = qb(h ® i) 

Next, suppose that f ® g -< (h ® i)'. Then 

f(x) ® g(y) -< [h(x) ® i(y)]' 

for every x ~ X, y ~ Y If g(Yo) Y- i(yo) for some Y0 ~ Y, then 

f(x) ® g(Yo) <- [h(x) ® i(y0)]' 

for every x ~ X. It follows that f 3_ h. Hence, either f 3_ h or g 3_ i, so 

qb(f@ g) = a(f ,  g) <-- a(h, i)' = d~((h ® i)') 

The other cases follow in a similar way. For example, suppose that ( f ®  g)' 
--< (h ® i)'. It follows that 

h(x) ® i(y) <--f(x) ® g(y) 

for a l l x  ~ X , y  ~ E so h - < f a n d  i -< g. Hence, et(h, i) -< a ( f , g ) ,  so 
a(f ,  g)' -< a(h, i)'. Hence, 

~b((f® g)') = a(f ,  g)'  -< ec(h, i)' = a((h ® i)') • 

Corollary 9.2. Let P C QX and R C Qr be Q-function SOPs, where Q 
= So, St, $2, $3, or $4. Then the tensor product (P ® R, 'r) of P and R is a 
sub-SOP of (Q ® Q)XXr and "r(f, g)(x, y) = f(x) ® g(y) for a l l f  E P, g 
R, x E X ,  y E Y  

To be specific, we say that a SOP P has type 0, 1, 2, 3, or 4 if P is: an 
orthoposet; closed and regular; closed, sharp, and unit; or complementing, 
respectively. 

Corollary. 9.3. Let P and R be SOPs of type t, t = 0, 1, 2, 3, 4. Then 
the tensor product (P ® R, "r) of P and R is an S, ® St-function SOP. Moreover, 
if IX and v are S,-morphisms on P and R, respectively, then there exists a 
unique St ® Sfmorphism k on P ® R such that k['r(a, b)] = Ix(a) ® v(b) 
for all a E P,b ~ R. 
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Proof Let Mp and MR be the set of all St-morphisms on P and R, 
respectively. From previous results, we have seen that there exist isomor- 
phisms u, v from P, R to S,-function SOPs Fp C S~ p, FR C S~ R, respectively. 
Let (Fe ® F;~ "r I) be the tensor product of  Fp and FR in accordance with 
Corollary 9.2. Define r: P × R ---> Fe ® FR by 

"r(a, b) = "rl(u(a), v(b)) = u(a) ® v(b) 

We easily conclude that "r is a bimorphism and "r(P × R) generates Fe ® 
FR. Let a: P × R --9 L be a bimorphism, where L has type t. It follows that 
as: Fp × FR ---> L given by al(u(a),  v(b)) = a(a, b) is a bimorphism. Hence, 
there exists a morphism dp: Fp ® FR ---> L such that al  = ~b o "rl. Now 

(~b o 'r)(a, b) = qb['rl(u(a), v(b))] = al(u(a),  v(b)) = a(a, b) 

Hence, c~ = + o "r, so (Fe ® Fe, "f) is the tensor product of  P and R. Finally, 
let ~z and v be S,-morphisms on P and R, respectively. Define k: Fe ® FR 
--4 St ® S, by M f  ® g) = f ( ~ )  ® g(v). It is clear that h is an S, ® S,- 
morphism and we have 

h['r(a, b)] = h[u(a) Q v(b)] = u(a)(Ix) ® v(b)(v) 

I~(a) ® v(b) 

Finally, k is clearly unique, m 

Corollary 9.4. Let P and R be orthoposets. Then the tensor product (P 
® R, 'r) of  P and R is a standard set-SOP of  subsets of  a Cartesian product 
X × Y and 'r(a, b) = A × B, where A C X, B C Y. Moreover, if bt and v 
are S0-morphisms on P and Q, respectively, then there exists a unique h 
X × Y such that Ix(a)v(b) = ×a×B(h) for all a E P, b ~ R. 

Corollary 9.5. Let P and R be closed, regular SOPs. Then the tensor 
product (P ® R, 'r) of  P and R is a [0, 1 ]-function SOP of  functions on a 
Cartesian product X × Y and "r(a, b)(x, y) = f(x)g(y), w h e r e f  ~ [0, 1] x, g 

[0, 1 ] v.. Moreover, if Ix and v are [0, 1 ]-morphisms on P and Q, respectively, 
then there exists a unique (x, y) E X × Y such that tx(a)v(b) = "r(a, b)(x, y) 
for all a ~ P,b E R. 
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